The External Exposome and COVID-19 Severity

外部暴露组和 COVID-19 严重程度

基本信息

  • 批准号:
    10174270
  • 负责人:
  • 金额:
    $ 22.19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-20 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY The 2019 novel coronavirus disease (COVID-19) is a global pandemic with severe medical and socioeconomic consequences. Young adults without any underlying health conditions can still develop severe COVID-19 disease, and there are racial and ethnic disparities in COVID-19 hospitalization and mortality rates which cannot be explained by age and underlying health conditions alone. Risk factors of severe COVID-19 beyond older age and underlying health conditions are large unknown. There are large overlaps between the currently known risk factors of severe COVID-19 and the health conditions that are affected by environmental exposures, and emerging evidence suggested that long-term environmental exposures may be important determinants of COVID-19 severity. Traditional environmental epidemiological studies usually examine environmental factors separately without considering “the totality of the external environment”. Such studies are not only time consuming as they examine individual exposures separately, but more importantly, cannot account for confounding by co-exposures. The external exposome is an ideal framework to identify novel exposures associated with severe COVID-19 as it can systematically and efficiently screen thousands of environmental exposures. In this project, we will leverage a unique real-world data (RWD) resource – OneFlorida – a large repository of linked electronic health records (EHR), claims and vital statistics data, covering more than 60% of Floridians, contributing to the national Patient-Centered Clinical Research Network (PCORnet). Building on our prior work on the external exposome, we will expand our existing external exposome database to include additional factors that may impact COVID-19 outcomes through a systematic analysis of literature and resources. We aim to (1) develop phenotyping algorithms for identifying a COVID-19 cohort and their severity and extracting associated individual-level risk factors from the OneFlorida real-world data, and (2) identify external exposome factors associated with severe COVID-19, examine how the external exposome contributes to racial and ethnic disparities in severe COVID-19, and build predictive models of severe COVID-19 with external exposome factors. This study will fill important knowledge gaps by providing timely information to understand how environmental exposures may impact COVID-19 severity that will improve identifications of high-risk COVID-19 patients and inform the design of future precision interventions. Our approach and initial results for Florida can (1) be readily scaled up to a multi-state study through PCORnet and (2) answer other novel questions such as the external exposome’s contribution to geographic disparities in COVID-19 outcomes.
项目摘要 2019年新颖的冠状病毒病(Covid-19)是全球大流行,严重的医学和社会经济 结果。没有任何潜在健康状况的年轻人仍然会发展严重的COVID-19 疾病,在199年的住院和死亡率中有种族和种族分布 不能仅靠年龄和基本的健康状况来解释。严重的Covid-19的风险因素超出 年龄较大的健康状况是很大的未知。当前之间有很大的重叠 严重COVID-19的已知危险因素以及受环境影响的健康状况 暴露和新兴证据表明,长期环境暴露可能很重要 COVID-19的严重程度的决定因素。传统的环境流行病学研究通常检查 环境因素分别考虑“外部环境的总体”。这样的研究 不仅要分别检查个人暴露,而且更重要的是,不仅要耗时 由共同曝光混淆。外部展览是识别新颖的理想框架 与严重的共同-19相关的暴露,因为它可以系统地有效地筛选数千个 环境暴露。在这个项目中,我们将利用独特的现实数据(RWD)资源 - Oneflorida - 链接的电子健康记录(EHR)的大量存储库,索赔和生命统计数据, 覆盖60%以上的佛罗里达人,为国家以患者为中心的临床研究网络做出了贡献 (PCORNET)。在我们先前在外部展览体上工作的基础,我们将扩展现有的外部 外向数据库,包括可能通过系统性影响Covid-19结果的其他因素 分析文献和资源。我们的目标是(1)开发表型算法以识别COVID-19 从Oneflorida现实世界中提取相关的个人级别风险因素 数据,以及(2)确定与严重的共同-19相关的外部释放因素,检查外部如何 宣传体有助于严重的共同竞争中的种族和种族分布,并建立了预测模型 严重的COVID-19具有外部释放因子。这项研究将通过提供重要的知识空白 及时的信息以了解环境暴露如何影响COVID-19的严重性 改善对高风险共证患者的识别,并告知未来精确干预措施的设计。 我们的方法和佛罗里达的初始结果可以(1)通过PCORNET很容易缩放到多州研究 (2)回答其他新颖的问题,例如外部展示体对地理分布的贡献 COVID-19结果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jiang Bian其他文献

Jiang Bian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jiang Bian', 18)}}的其他基金

ACTS (AD Clinical Trial Simulation): Developing Advanced Informatics Approaches for an Alzheimer's Disease Clinical Trial Simulation System
ACTS(AD 临床试验模拟):为阿尔茨海默病临床试验模拟系统开发先进的信息学方法
  • 批准号:
    10753675
  • 财政年份:
    2023
  • 资助金额:
    $ 22.19万
  • 项目类别:
Disparities of Alzheimer's disease progression in sexual and gender minorities
性少数群体中阿尔茨海默病进展的差异
  • 批准号:
    10590413
  • 财政年份:
    2023
  • 资助金额:
    $ 22.19万
  • 项目类别:
Post-Acute Sequelae of SARS-CoV-2 Infection and Subsequent Disease Progression in Individuals with AD/ADRD: Influence of the Social and Environmental Determinants of Health
AD/ADRD 患者 SARS-CoV-2 感染的急性后遗症和随后的疾病进展:健康的社会和环境决定因素的影响
  • 批准号:
    10751275
  • 财政年份:
    2023
  • 资助金额:
    $ 22.19万
  • 项目类别:
Artificial Intelligence and Counterfactually Actionable Responses to End HIV (AI-CARE-HIV)
人工智能和反事实可行的终结艾滋病毒应对措施 (AI-CARE-HIV)
  • 批准号:
    10699171
  • 财政年份:
    2023
  • 资助金额:
    $ 22.19万
  • 项目类别:
An end-to-end informatics framework to study Multiple Chronic Conditions (MCC)'s impact on Alzheimer's disease using harmonized electronic health records
使用统一的电子健康记录研究多种慢性病 (MCC) 对阿尔茨海默病的影响的端到端信息学框架
  • 批准号:
    10728800
  • 财政年份:
    2023
  • 资助金额:
    $ 22.19万
  • 项目类别:
AI-ADRD: Accelerating interventions of AD/ADRD via Machine learning methods
AI-ADRD:通过机器学习方法加速 AD/ADRD 干预
  • 批准号:
    10682237
  • 财政年份:
    2023
  • 资助金额:
    $ 22.19万
  • 项目类别:
Advancing Precision Lung Cancer Surveillance and Outcomes in Diverse Populations (PLuS2)
推进不同人群的精准肺癌监测和结果 (PLuS2)
  • 批准号:
    10752848
  • 财政年份:
    2023
  • 资助金额:
    $ 22.19万
  • 项目类别:
Eligibility criteria design for Alzheimer's trials with real-world data and explainable AI
利用真实数据和可解释的人工智能设计阿尔茨海默病试验的资格标准
  • 批准号:
    10608470
  • 财政年份:
    2023
  • 资助金额:
    $ 22.19万
  • 项目类别:
Computational Drug Repurposing for AD/ADRD with Integrative Analysis of Real World Data and Biomedical Knowledge
通过对真实世界数据和生物医学知识的综合分析,计算药物再利用用于 AD/ADRD
  • 批准号:
    10576853
  • 财政年份:
    2022
  • 资助金额:
    $ 22.19万
  • 项目类别:
Computational Drug Repurposing for AD/ADRD with Integrative Analysis of Real World Data and Biomedical Knowledge
通过对真实世界数据和生物医学知识的综合分析,计算药物再利用用于 AD/ADRD
  • 批准号:
    10392169
  • 财政年份:
    2022
  • 资助金额:
    $ 22.19万
  • 项目类别:

相似国自然基金

多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
  • 批准号:
    82373667
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
恒星模型中氧元素丰度的变化对大样本F、G、K矮星年龄测定的影响
  • 批准号:
    12303035
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于年龄和空间的非随机混合对性传播感染影响的建模与研究
  • 批准号:
    12301629
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
母传抗体水平和疫苗初种年龄对儿童麻疹特异性抗体动态变化的影响
  • 批准号:
    82304205
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
中国东部地区大气颗粒物的年龄分布特征及其影响因素的模拟研究
  • 批准号:
    42305193
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Infant Immunologic and Neurologic Development following Maternal Infection in Pregnancy during Recent Epidemics
近期流行病期间妊娠期感染后婴儿的免疫和神经系统发育
  • 批准号:
    10784250
  • 财政年份:
    2023
  • 资助金额:
    $ 22.19万
  • 项目类别:
Alzheimer's Disease and Related Dementia-like Sequelae of SARS-CoV-2 Infection: Virus-Host Interactome, Neuropathobiology, and Drug Repurposing
阿尔茨海默病和 SARS-CoV-2 感染的相关痴呆样后遗症:病毒-宿主相互作用组、神经病理生物学和药物再利用
  • 批准号:
    10661931
  • 财政年份:
    2023
  • 资助金额:
    $ 22.19万
  • 项目类别:
Interactions of SARS-CoV-2 infection and genetic variation on the risk of cognitive decline and Alzheimer’s disease in Ancestral and Admixed Populations
SARS-CoV-2 感染和遗传变异的相互作用对祖先和混血人群认知能力下降和阿尔茨海默病风险的影响
  • 批准号:
    10628505
  • 财政年份:
    2023
  • 资助金额:
    $ 22.19万
  • 项目类别:
Impact of SARS-CoV-2 infection on respiratory viral immune responses in children with and without asthma
SARS-CoV-2 感染对患有和不患有哮喘的儿童呼吸道病毒免疫反应的影响
  • 批准号:
    10568344
  • 财政年份:
    2023
  • 资助金额:
    $ 22.19万
  • 项目类别:
Determining the Incidence, Risk Factors and Biological Drivers of Irritable Bowel Syndrome (IBS) as Part of the Constellation of Post-Acute Sequelae of SARS-CoV-2 Infection (PASC) Outcomes
确定肠易激综合症 (IBS) 的发病率、危险因素和生物驱动因素作为 SARS-CoV-2 感染急性后遗症 (PASC) 结果的一部分
  • 批准号:
    10630409
  • 财政年份:
    2023
  • 资助金额:
    $ 22.19万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了