Optimizing prediction of preschool psychopathology from brain: behavior markers of emotion dysregulation from birth: A computational, developmental cognitive neuroscience approach
大脑对学前精神病理学的优化预测:出生后情绪失调的行为标志:一种计算的、发展的认知神经科学方法
基本信息
- 批准号:10162666
- 负责人:
- 金额:$ 146.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-12 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AgeAlgorithmsAssessment toolBehavioralBehavioral SciencesBirthBrainCardiovascular systemChildChronic DiseaseClinicClinicalClinical ResearchCognitiveDataData ScienceData SourcesDevelopmentDimensionsDiseaseEarly InterventionEarly identificationElectroencephalographyElementsEnvironmental Risk FactorEpidemiologyExtramural ActivitiesFutureGenerationsHeightInfantInterviewLongevityMagnetic Resonance ImagingMeasurementMeasuresMental HealthMental disordersMethodsModelingNeuronal PlasticityNursery SchoolsOutcomePatternPerformancePhenotypePredictive ValuePreventionPrimary Health CareProperdinProtocols documentationPsychopathologyPublic HealthResearchResearch Domain CriteriaResearch PersonnelResourcesRiskRisk AssessmentRisk MarkerSampling StudiesScienceSeriesSiteStandardizationSurvey MethodologySurveysTestingTimeTo specifyTranslationsUncertaintyUniversitiesValidationWashingtonaffective neurosciencebasebrain behaviorclinical riskclinical translationcognitive neurosciencecohortconnectomecost effectivenessdeep learningearly childhoodearly onsetemotion dysregulationepidemiologic dataimaging modalityimprovedinfancyinnovationlearning strategymedical specialtiesmental disorder preventionmultidisciplinarymultimodalitynervous system disorderneural correlateneurodevelopmentneuroimagingpostnatalprediction algorithmprimary care settingprotective factorsrelating to nervous systemrisk predictionsoundstandard of caretoolvisual tracking
项目摘要
PROJECT SUMMARY: Internalizing/externalizing psychopathologies are identifiable by age 3, with
neurodevelopmental risk markers evident in infants. Despite powerful implications for prevention, clinical
impact has been minimal. We use innovative computational and epidemiologic data science methods to
accelerate clinical translation of neurodevelopmental discovery during infancy towards generalizable risk
prediction for preschool psychopathology. Our main objective is generating a pragmatic clinical risk calculator
for public health use, the Mental Health Risk Calculator for Young Children (MHRiskCalc-YC). To achieve
necessary power and precision, we create the Mental Health, Earlier Synthetic Cohort (MHESC), pooling
multiple extramural cohorts at Washington University and Northwestern University to form the first clinically-
enriched “synthetic” neuroimaging cohort for generation of neurodevelopmentally-based clinical risk algorithms
(N=1,020, followed from birth-54 mos.). To maximize the risk calculator's clinical and research utility and cost
effectiveness, we will generate a series of risk algorithms tailored to envisioned end-users, incorporating input
from clinical stakeholders. Algorithms will also establish added value of pre-postnatal environmental factors in
risk prediction, a crucial but understudied RDoC element. Aim 1 optimizes clinical feasibility and cost
effectiveness by generating an MHRiskCalc-YC algorithm derived solely from commonly used survey data to
optimize feasibility for future use in primary care settings. Aim 2 optimizes precision of prediction by
establishing statistical and clinical incremental utility of more intensive assessment for future use in mental
health specialty settings. This algorithm sequentially tests the added predictive value of methods of
intermediate-high intensity (from direct assessments to EEG to MRI) for most precise, least burdensome risk
prediction. The Aim 3 algorithm is optimized for future clinical research use in neurodevelopmental consortia,
modeling the added value of MRI data to the Aim 1 algorithm. This mirrors “common” protocols of
neuroimaging consortia and will also generate an empirically-derived best practices guide for consortia to
optimize timing/ number of neuroimaging assessments. External validity will be established in the Baby
Connectome Project (BCP). The MHESC capitalizes on an unprecedented, time-sensitive opportunity to
accelerate scientific and clinical impact of multiple extramural activities that have been extensively pre-aligned.
The public health impact of an infancy-based clinical risk prediction tool for preschool psychopathology has
transformative potential for altering standard of care in early identification and prevention of mental disorders.
项目摘要:到3岁时可以识别内化/外部化心理病理学
神经发育风险标记婴儿的证据。尽管对预防有很大影响,但临床
影响很小。我们使用创新的计算和流行病学数据科学方法
婴儿期神经发育发现的加速临床翻译朝向可推广的风险
学龄前心理病理学的预测。我们的主要目标是产生务实的临床风险计算器
为了公共卫生,幼儿的心理健康风险计算器(MHRiskcalc-YC)。实现
必要的力量和精确度,我们创建了心理健康,早期的合成队列(MHESC),合并
华盛顿大学和西北大学的多个壁外队列形成了第一个临床 -
富集基于神经发育的临床风险算法的“合成”神经影像学队列
(n = 1,020,其次是来自Birth-54 Mos。)。最大化风险计算器的临床和研究实用程序和成本
有效性,我们将生成针对设想的最终用户量身定制的一系列风险算法,编码输入
来自临床利益相关者。算法还将建立前骨前环境因素的附加值
风险预测,这是一个至关重要但知识的RDOC元素。 AIM 1优化临床可行性和成本
通过生成仅从常用的调查数据得出的MHRiskCalc-YC算法来实现的有效性
优化在初级保健环境中使用的可行性。 AIM 2通过
建立更深入评估的统计和临床增量效用,以供将来的精神使用
健康专业环境。该算法顺序测试
最精确的,最少的,中高强度(从直接评估到脑电图到MRI)
预言。 AIM 3算法被优化,用于在神经发育联盟中的未来临床研究中使用,
对AIM 1算法的MRI数据的附加值进行建模。这反映了“常见”协议的
神经想象财团,还将为财团生成一份经验衍生的最佳实践指南
优化定时/神经影像学评估的数量。婴儿将在婴儿中确定
Connectome项目(BCP)。 MHESC利用了前所未有的时间敏感的机会
多种壁外活动的加速科学和临床影响已被广泛预一致。
基于婴儿期的临床风险预测工具的公共卫生影响学龄前心理病理学的影响
在早期识别和预防精神障碍中改变护理标准的变革潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOAN L. LUBY其他文献
JOAN L. LUBY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOAN L. LUBY', 18)}}的其他基金
Optimizing prediction of preschool psychopathology from brain: behavior markers of emotion dysregulation from birth: A computational, developmental cognitive neuroscience approach
大脑对学前精神病理学的优化预测:出生后情绪失调的行为标志:一种计算的、发展的认知神经科学方法
- 批准号:
10891170 - 财政年份:2020
- 资助金额:
$ 146.83万 - 项目类别:
Optimizing prediction of preschool psychopathology from brain: behavior markers of emotion dysregulation from birth: A computational, developmental cognitive neuroscience approach
大脑对学前精神病理学的优化预测:出生后情绪失调的行为标志:一种计算的、发展的认知神经科学方法
- 批准号:
10056737 - 财政年份:2020
- 资助金额:
$ 146.83万 - 项目类别:
Optimizing prediction of preschool psychopathology from brain: behavior markers of emotion dysregulation from birth: A computational, developmental cognitive neuroscience approach
大脑对学前精神病理学的优化预测:出生后情绪失调的行为标志:一种计算的、发展的认知神经科学方法
- 批准号:
10577867 - 财政年份:2020
- 资助金额:
$ 146.83万 - 项目类别:
Optimizing prediction of preschool psychopathology from brain: behavior markers of emotion dysregulation from birth: A computational, developmental cognitive neuroscience approach
大脑对学前精神病理学的优化预测:出生后情绪失调的行为标志:一种计算的、发展的认知神经科学方法
- 批准号:
10361482 - 财政年份:2020
- 资助金额:
$ 146.83万 - 项目类别:
Early Life Adversity, Biological Embedding, and Risk for Developmental Precursors of Mental Disorders
生命早期的逆境、生物嵌入和精神障碍发育先兆的风险
- 批准号:
10158509 - 财政年份:2018
- 资助金额:
$ 146.83万 - 项目类别:
Early Life Adversity, Biological Embedding, and Risk for Developmental Precursors of Mental Disorders
生命早期的逆境、生物嵌入和精神障碍发育先兆的风险
- 批准号:
10744627 - 财政年份:2018
- 资助金额:
$ 146.83万 - 项目类别:
A RANDOMIZED CONTROLLED TRIAL OF PCIT-ED FOR PRESCHOOL DEPRESSION
PCIT-ED 治疗学前抑郁症的随机对照试验
- 批准号:
8527571 - 财政年份:2013
- 资助金额:
$ 146.83万 - 项目类别:
A RANDOMIZED CONTROLLED TRIAL OF PCIT-ED FOR PRESCHOOL DEPRESSION
PCIT-ED 治疗学前抑郁症的随机对照试验
- 批准号:
8683248 - 财政年份:2013
- 资助金额:
$ 146.83万 - 项目类别:
Early Intervention in Depression Dyadic Emotion Development Therapy for Preschool
学龄前抑郁症的早期干预二元情绪发展疗法
- 批准号:
7492054 - 财政年份:2007
- 资助金额:
$ 146.83万 - 项目类别:
Early Intervention in Depression Dyadic Emotion Development Therapy for Preschool
学龄前抑郁症的早期干预二元情绪发展疗法
- 批准号:
7384798 - 财政年份:2007
- 资助金额:
$ 146.83万 - 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Towards equitable early identification of autism spectrum disorders in females
实现女性自闭症谱系障碍的公平早期识别
- 批准号:
10722011 - 财政年份:2023
- 资助金额:
$ 146.83万 - 项目类别:
Development of practical screening tools to support targeted prevention of early, high-risk drinking substance use
开发实用的筛查工具,以支持有针对性地预防早期高风险饮酒物质的使用
- 批准号:
10802793 - 财政年份:2023
- 资助金额:
$ 146.83万 - 项目类别:
Moving Beyond the Individual- A Data-driven Approach to Improving the Evidence on the Role of Community and Societal Determinants of HIV among Adolescent Girls and Young Women in Sub-Saharan Africa
超越个人——采用数据驱动的方法来改善关于艾滋病毒在撒哈拉以南非洲地区少女和年轻妇女中的社区和社会决定因素的作用的证据
- 批准号:
10619319 - 财政年份:2023
- 资助金额:
$ 146.83万 - 项目类别:
Improving Lipid Management Strategies in Young Adults
改善年轻人的血脂管理策略
- 批准号:
10639036 - 财政年份:2023
- 资助金额:
$ 146.83万 - 项目类别:
A Machine Learning Algorithm to Assess Functional "Brain Age" from an In-Home EEG Sleepband
一种通过家用脑电图睡眠带评估功能性“大脑年龄”的机器学习算法
- 批准号:
10820286 - 财政年份:2023
- 资助金额:
$ 146.83万 - 项目类别: