Optimizing prediction of preschool psychopathology from brain: behavior markers of emotion dysregulation from birth: A computational, developmental cognitive neuroscience approach
大脑对学前精神病理学的优化预测:出生后情绪失调的行为标志:一种计算的、发展的认知神经科学方法
基本信息
- 批准号:10162666
- 负责人:
- 金额:$ 146.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-12 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AgeAlgorithmsAssessment toolBehavioralBehavioral SciencesBirthBrainCardiovascular systemChildChronic DiseaseClinicClinicalClinical ResearchCognitiveDataData ScienceData SourcesDevelopmentDimensionsDiseaseEarly InterventionEarly identificationElectroencephalographyElementsEnvironmental Risk FactorEpidemiologyExtramural ActivitiesFutureGenerationsHeightInfantInterviewLongevityMagnetic Resonance ImagingMeasurementMeasuresMental HealthMental disordersMethodsModelingNeuronal PlasticityNursery SchoolsOutcomePatternPerformancePhenotypePredictive ValuePreventionPrimary Health CareProperdinProtocols documentationPsychopathologyPublic HealthResearchResearch Domain CriteriaResearch PersonnelResourcesRiskRisk AssessmentRisk MarkerSampling StudiesScienceSeriesSiteStandardizationSurvey MethodologySurveysTestingTimeTo specifyTranslationsUncertaintyUniversitiesValidationWashingtonaffective neurosciencebasebrain behaviorclinical riskclinical translationcognitive neurosciencecohortconnectomecost effectivenessdeep learningearly childhoodearly onsetemotion dysregulationepidemiologic dataimaging modalityimprovedinfancyinnovationlearning strategymedical specialtiesmental disorder preventionmultidisciplinarymultimodalitynervous system disorderneural correlateneurodevelopmentneuroimagingpostnatalprediction algorithmprimary care settingprotective factorsrelating to nervous systemrisk predictionsoundstandard of caretoolvisual tracking
项目摘要
PROJECT SUMMARY: Internalizing/externalizing psychopathologies are identifiable by age 3, with
neurodevelopmental risk markers evident in infants. Despite powerful implications for prevention, clinical
impact has been minimal. We use innovative computational and epidemiologic data science methods to
accelerate clinical translation of neurodevelopmental discovery during infancy towards generalizable risk
prediction for preschool psychopathology. Our main objective is generating a pragmatic clinical risk calculator
for public health use, the Mental Health Risk Calculator for Young Children (MHRiskCalc-YC). To achieve
necessary power and precision, we create the Mental Health, Earlier Synthetic Cohort (MHESC), pooling
multiple extramural cohorts at Washington University and Northwestern University to form the first clinically-
enriched “synthetic” neuroimaging cohort for generation of neurodevelopmentally-based clinical risk algorithms
(N=1,020, followed from birth-54 mos.). To maximize the risk calculator's clinical and research utility and cost
effectiveness, we will generate a series of risk algorithms tailored to envisioned end-users, incorporating input
from clinical stakeholders. Algorithms will also establish added value of pre-postnatal environmental factors in
risk prediction, a crucial but understudied RDoC element. Aim 1 optimizes clinical feasibility and cost
effectiveness by generating an MHRiskCalc-YC algorithm derived solely from commonly used survey data to
optimize feasibility for future use in primary care settings. Aim 2 optimizes precision of prediction by
establishing statistical and clinical incremental utility of more intensive assessment for future use in mental
health specialty settings. This algorithm sequentially tests the added predictive value of methods of
intermediate-high intensity (from direct assessments to EEG to MRI) for most precise, least burdensome risk
prediction. The Aim 3 algorithm is optimized for future clinical research use in neurodevelopmental consortia,
modeling the added value of MRI data to the Aim 1 algorithm. This mirrors “common” protocols of
neuroimaging consortia and will also generate an empirically-derived best practices guide for consortia to
optimize timing/ number of neuroimaging assessments. External validity will be established in the Baby
Connectome Project (BCP). The MHESC capitalizes on an unprecedented, time-sensitive opportunity to
accelerate scientific and clinical impact of multiple extramural activities that have been extensively pre-aligned.
The public health impact of an infancy-based clinical risk prediction tool for preschool psychopathology has
transformative potential for altering standard of care in early identification and prevention of mental disorders.
项目摘要:内化/外化精神病理学在 3 岁时就可以识别,
尽管对预防、临床具有重要意义,但神经发育风险标记在婴儿中很明显。
我们使用创新的计算和流行病学数据科学方法来减少影响。
加速婴儿期神经发育发现向普遍风险的临床转化
我们的主要目标是生成一个实用的临床风险计算器。
用于公共卫生用途的幼儿心理健康风险计算器 (MHRiskCalc-YC)。
必要的力量和精度,我们创建了心理健康早期综合队列(MHESC),汇集
华盛顿大学和西北大学的多个校外队列形成了第一个临床-
丰富的“合成”神经影像队列,用于生成基于神经发育的临床风险算法
(N=1,020,从出生到 54 个月)最大化风险计算器的临床和研究效用和成本。
有效性,我们将生成一系列针对设想的最终用户量身定制的风险算法,并结合输入
来自临床利益相关者的算法还将确定产前产后环境因素的附加值。
风险预测是 RDoC 的一个重要但尚未得到充分研究的要素,目标 1 优化了临床可行性和成本。
通过生成仅源自常用调查数据的 MHRiskCalc-YC 算法来提高有效性
目标 2 通过以下方式优化未来在初级保健环境中使用的可行性。
建立更深入的评估的统计和临床增量效用,以供将来在心理治疗中使用
该算法依次测试以下方法的附加预测值。
中高强度(从直接评估到脑电图到核磁共振)可实现最精确、负担最小的风险
Aim 3 算法针对神经发育联盟未来的临床研究用途进行了优化,
将 MRI 数据的附加值建模到 Aim 1 算法中,这反映了“常见”协议。
神经影像联盟,还将为联盟生成一个基于经验的最佳实践指南
优化婴儿神经影像评估的时间/数量。
连接组项目 (BCP)。 MHESC 利用前所未有的、时间敏感的机会
加速已广泛预先调整的多项校外活动的科学和临床影响。
基于婴儿期的学前精神病理学临床风险预测工具对公共卫生的影响
改变早期识别和预防精神障碍的护理标准的变革潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOAN L. LUBY其他文献
JOAN L. LUBY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOAN L. LUBY', 18)}}的其他基金
Optimizing prediction of preschool psychopathology from brain: behavior markers of emotion dysregulation from birth: A computational, developmental cognitive neuroscience approach
大脑对学前精神病理学的优化预测:出生后情绪失调的行为标志:一种计算的、发展的认知神经科学方法
- 批准号:
10891170 - 财政年份:2020
- 资助金额:
$ 146.83万 - 项目类别:
Optimizing prediction of preschool psychopathology from brain: behavior markers of emotion dysregulation from birth: A computational, developmental cognitive neuroscience approach
大脑对学前精神病理学的优化预测:出生后情绪失调的行为标志:一种计算的、发展的认知神经科学方法
- 批准号:
10056737 - 财政年份:2020
- 资助金额:
$ 146.83万 - 项目类别:
Optimizing prediction of preschool psychopathology from brain: behavior markers of emotion dysregulation from birth: A computational, developmental cognitive neuroscience approach
大脑对学前精神病理学的优化预测:出生后情绪失调的行为标志:一种计算的、发展的认知神经科学方法
- 批准号:
10577867 - 财政年份:2020
- 资助金额:
$ 146.83万 - 项目类别:
Optimizing prediction of preschool psychopathology from brain: behavior markers of emotion dysregulation from birth: A computational, developmental cognitive neuroscience approach
大脑对学前精神病理学的优化预测:出生后情绪失调的行为标志:一种计算的、发展的认知神经科学方法
- 批准号:
10361482 - 财政年份:2020
- 资助金额:
$ 146.83万 - 项目类别:
Early Life Adversity, Biological Embedding, and Risk for Developmental Precursors of Mental Disorders
生命早期的逆境、生物嵌入和精神障碍发育先兆的风险
- 批准号:
10158509 - 财政年份:2018
- 资助金额:
$ 146.83万 - 项目类别:
Early Life Adversity, Biological Embedding, and Risk for Developmental Precursors of Mental Disorders
生命早期的逆境、生物嵌入和精神障碍发育先兆的风险
- 批准号:
10744627 - 财政年份:2018
- 资助金额:
$ 146.83万 - 项目类别:
A RANDOMIZED CONTROLLED TRIAL OF PCIT-ED FOR PRESCHOOL DEPRESSION
PCIT-ED 治疗学前抑郁症的随机对照试验
- 批准号:
8527571 - 财政年份:2013
- 资助金额:
$ 146.83万 - 项目类别:
A RANDOMIZED CONTROLLED TRIAL OF PCIT-ED FOR PRESCHOOL DEPRESSION
PCIT-ED 治疗学前抑郁症的随机对照试验
- 批准号:
8683248 - 财政年份:2013
- 资助金额:
$ 146.83万 - 项目类别:
Early Intervention in Depression Dyadic Emotion Development Therapy for Preschool
学龄前抑郁症的早期干预二元情绪发展疗法
- 批准号:
7492054 - 财政年份:2007
- 资助金额:
$ 146.83万 - 项目类别:
Early Intervention in Depression Dyadic Emotion Development Therapy for Preschool
学龄前抑郁症的早期干预二元情绪发展疗法
- 批准号:
7384798 - 财政年份:2007
- 资助金额:
$ 146.83万 - 项目类别:
相似国自然基金
地表与大气层顶短波辐射多分量一体化遥感反演算法研究
- 批准号:42371342
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
高速铁路柔性列车运行图集成优化模型及对偶分解算法
- 批准号:72361020
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
随机密度泛函理论的算法设计和分析
- 批准号:12371431
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于全息交通数据的高速公路大型货车运行风险识别算法及主动干预方法研究
- 批准号:52372329
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
强磁场作用下两相铁磁流体动力学相场模型的高精度数值算法研究
- 批准号:12361074
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
相似海外基金
Towards equitable early identification of autism spectrum disorders in females
实现女性自闭症谱系障碍的公平早期识别
- 批准号:
10722011 - 财政年份:2023
- 资助金额:
$ 146.83万 - 项目类别:
Development of practical screening tools to support targeted prevention of early, high-risk drinking substance use
开发实用的筛查工具,以支持有针对性地预防早期高风险饮酒物质的使用
- 批准号:
10802793 - 财政年份:2023
- 资助金额:
$ 146.83万 - 项目类别:
Moving Beyond the Individual- A Data-driven Approach to Improving the Evidence on the Role of Community and Societal Determinants of HIV among Adolescent Girls and Young Women in Sub-Saharan Africa
超越个人——采用数据驱动的方法来改善关于艾滋病毒在撒哈拉以南非洲地区少女和年轻妇女中的社区和社会决定因素的作用的证据
- 批准号:
10619319 - 财政年份:2023
- 资助金额:
$ 146.83万 - 项目类别:
Improving Lipid Management Strategies in Young Adults
改善年轻人的血脂管理策略
- 批准号:
10639036 - 财政年份:2023
- 资助金额:
$ 146.83万 - 项目类别:
A Machine Learning Algorithm to Assess Functional "Brain Age" from an In-Home EEG Sleepband
一种通过家用脑电图睡眠带评估功能性“大脑年龄”的机器学习算法
- 批准号:
10820286 - 财政年份:2023
- 资助金额:
$ 146.83万 - 项目类别: