Towards equitable early identification of autism spectrum disorders in females
实现女性自闭症谱系障碍的公平早期识别
基本信息
- 批准号:10722011
- 负责人:
- 金额:$ 12.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-11 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:AgeAlgorithmsAssessment toolBrainChildClinicalCohort StudiesCommunitiesComputer ModelsDataData CollectionDecision TreesDetectionDevelopmentDiagnosisDiagnosticDimensionsEarly InterventionEarly identificationEnvironmentEquityEvaluationFactor AnalysisFamilyFemaleFundingFutureGeneral PopulationGoalsHeterogeneityInfrastructureInterventionInterviewKnowledgeLifeLongevityMachine LearningMeasurementMeasuresMedicalMental disordersMentored Clinical Scientist Development ProgramMentorsMentorshipMethodologyMethodsMinnesotaModelingNational Institute of Mental HealthOutcomeParentsPerceptionPerformancePhasePositioning AttributePrimary CareProviderPsychologistQuality of lifeQuestionnairesRegistriesReportingResearchRiskSamplingScreening procedureSex DifferencesSigns and SymptomsSiteStrategic PlanningSubgroupSymptomsTestingToddlerTrainingTraining SupportUniversitiesVisitWaiting ListsWorkautism spectrum disorderautistic childrencareer developmentclinical translationclinically actionableclinically relevantcohortcommunity based participatory researchdisorder riskdissemination scienceearly childhoodearly screeninggender equitygradient boostingimplementation scienceimprovedinformation gatheringlensmalenovelpediatric departmentpediatricianprecision medicineprofessorrandom forestrecruitrepetitive behaviorscreeningservice interventionsexskillssocial communicationtraining opportunitytraittranslational research program
项目摘要
PROJECT SUMMARY/ABSTRACT
Screening tools for autism spectrum disorder (ASD) show poor predictive performance in practice, particularly
for females, which may arise due to sex-related measurement bias of screening questionnaires, and lack of
precision in capturing the variability in early symptom profiles of ASD. Computational approaches to
characterize heterogeneity and assess and account for sex-related measurement bias in early ASD symptoms
may identify ASD risk profiles that can be clinically actionable in practice. The candidate's long-term goals are
to enhance goals quality of life for children with ASD and their families by lowering the age of diagnosis,
especially in females missed by traditional screening methods. The research and training described in this K23
application will build on the candidate's existing expertise, adding conceptual and methodological skills needed
to develop and implement a novel screening approach that will more precisely identify ASD risk in a
community-based sample. Aim 1 evaluates the extent of sex-based measurement bias in measures shown to
capture clinically-relevant variability in early ASD traits in a sample of 3,000 children between 17-25 months
recruited from a community research registry. Aim 2 applies computational approaches to model dimensional
variability in early ASD symptoms and identify subgroups of risk in the same sample that are hypothesized to
vary on clinical outcomes at 36 months. Aim 3 takes a dissemination and implementation (D&I) science lens to
assess parent and provider views on screening practices to identify facilitators and barriers to change via
qualitative interviews (Pediatrician N=20; Parent N=40). This project is in line with NIMH Strategic Plan Goal 2
to “examining mental illness trajectories across the lifespan.” The candidate is a clinical psychologist and
Assistant Professor at the University of Minnesota, with expertise in characterizing sex differences in early
ASD trajectories. The proposed K23 application will provide the candidate with the training needed to develop
new knowledge and skills in conducting community-based screening for ASD, computational modeling of
heterogeneity, and dissemination and implementation science. Mentors Dr. Damien Fair, Jed Elison, and
Timothy Beebe possess the expertise and mentoring skills to support these training and scientific aims. This
will position the candidate to build an independent clinical-translational research program focused on improving
the precision of early screening for ASD to enable precision medicine for early ASD concerns that are
equitable by sex. Training will occur in an exceptional scientific environment in the Department of Pediatrics at
the University of Minnesota and the newly established Masonic Institute of the Developing Brain.
项目概要/摘要
自闭症谱系障碍 (ASD) 的筛查工具在实践中表现出较差的预测性能,特别是
对于女性,这可能是由于筛查问卷的性别相关测量偏差以及缺乏
精确捕获 ASD 早期症状特征的计算方法。
描述早期 ASD 症状的异质性并评估和解释与性别相关的测量偏差
可以确定在实践中可以临床操作的 ASD 风险概况 候选人的长期目标是。
通过降低诊断年龄来提高自闭症谱系障碍儿童及其家人的生活质量,
尤其是在传统筛查方法遗漏的女性中。本 K23 中描述的研究和培训。
申请将建立在候选人现有的专业知识的基础上,增加所需的概念和方法技能
开发和实施一种新颖的筛查方法,该方法将更准确地识别 ASD 风险
目标 1 评估基于性别的测量偏差的程度
捕获 3,000 名 17-25 个月内儿童样本中早期 ASD 特征的临床相关变异
目标 2 将计算方法应用于模型维度。
早期 ASD 症状的变异性,并确定同一样本中的风险亚组
目标 3 采用传播和实施 (D&I) 科学视角来实现 36 个月时临床结果的变化。
评估家长和提供者对筛查实践的看法,以确定变革的促进因素和障碍
定性访谈(儿科医生 N=20;家长 N=40) 该项目符合 NIMH 战略计划目标 2。
“检查整个生命周期的精神疾病轨迹。”候选人是一名临床心理学家,并且
明尼苏达大学助理教授,擅长描述早期性别差异
拟议的 K23 应用程序将为候选人提供发展所需的培训。
进行基于社区的 ASD 筛查、计算模型的新知识和技能
异质性、传播和实施科学导师Damien Fair、Jed Elison 和。
蒂莫西·毕比 (Timothy Beebe) 拥有支持这些培训和科学目标的专业知识和指导技能。
将使候选人建立一个独立的临床转化研究项目,重点是改善
自闭症谱系障碍 (ASD) 早期筛查的准确性,使精准医疗能够解决早期自闭症谱系障碍 (ASD) 问题
培训将在儿科的特殊科学环境中进行,性别平等。
明尼苏达大学和新成立的共济会大脑发育研究所。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Catherine Ann Burrows其他文献
Catherine Ann Burrows的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
地表与大气层顶短波辐射多分量一体化遥感反演算法研究
- 批准号:42371342
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
高速铁路柔性列车运行图集成优化模型及对偶分解算法
- 批准号:72361020
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
随机密度泛函理论的算法设计和分析
- 批准号:12371431
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于全息交通数据的高速公路大型货车运行风险识别算法及主动干预方法研究
- 批准号:52372329
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
高效非完全信息对抗性团队博弈求解算法研究
- 批准号:62376073
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Development of practical screening tools to support targeted prevention of early, high-risk drinking substance use
开发实用的筛查工具,以支持有针对性地预防早期高风险饮酒物质的使用
- 批准号:
10802793 - 财政年份:2023
- 资助金额:
$ 12.67万 - 项目类别:
Moving Beyond the Individual- A Data-driven Approach to Improving the Evidence on the Role of Community and Societal Determinants of HIV among Adolescent Girls and Young Women in Sub-Saharan Africa
超越个人——采用数据驱动的方法来改善关于艾滋病毒在撒哈拉以南非洲地区少女和年轻妇女中的社区和社会决定因素的作用的证据
- 批准号:
10619319 - 财政年份:2023
- 资助金额:
$ 12.67万 - 项目类别:
Improving Lipid Management Strategies in Young Adults
改善年轻人的血脂管理策略
- 批准号:
10639036 - 财政年份:2023
- 资助金额:
$ 12.67万 - 项目类别:
Pilot Testing Implementation of Suicide Risk Prediction Algorithms to Support Suicide Prevention in Primary Care
试点测试自杀风险预测算法的实施,以支持初级保健中的自杀预防
- 批准号:
10648772 - 财政年份:2023
- 资助金额:
$ 12.67万 - 项目类别:
Software Platform for Automatic, Opportunistic Screening of Vertebral Compression Fractures
用于自动、机会性筛查椎骨压缩性骨折的软件平台
- 批准号:
10755827 - 财政年份:2023
- 资助金额:
$ 12.67万 - 项目类别: