NeuroExM
神经ExM
基本信息
- 批准号:10156966
- 负责人:
- 金额:$ 76.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-02 至 2022-07-04
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAgingAntibodiesAxonBenchmarkingBiologicalBiological PreservationBiological SciencesBiotechnologyBrainBrain DiseasesCell physiologyCellular StructuresClassificationCollaborationsCommunitiesComplexComplex AnalysisComputer softwareComputersDataDendritesDendritic SpinesDetectionDevelopmentDrug AddictionFeasibility StudiesImageIn SituIndividualInvestigationKnowledgeLabelLightManualsMessenger RNAMicroscopeMicroscopyModelingMolecularMorphologyNeuraxisNeurodegenerative DisordersNeurodevelopmental DisorderNeuronsNeurosciences ResearchPerformancePeripheralPharmacologyPhasePopulationPopulation AnalysisPopulation DistributionsPreparationProcessProductionProteinsProteomeResearch PersonnelResolutionRunningSamplingScientistSocietiesSpatial DistributionSpecimenStainsStructureSynapsesSystemTechniquesTechnologyTestingThree-Dimensional ImageTimeTissue ExpansionTissuesTranslationsValidationVisualizationWorkage effectbasecomplex biological systemsdesigndrug developmentdrug discoveryfightingfluorophorehigh dimensionalityimage registrationimprovedinnovationinterestmicroscopic imagingnanoscalenervous system disorderneuronal cell bodyneuropsychiatric disordernew technologynext generationnovelpreventprototypereconstructionresearch and developmentresearch studysoftware developmentterabytetissue processingtranscriptometranslational neurosciencetreatment strategyusability
项目摘要
Abstract
This project describes the development of NeuroExM™, a highly innovative system for performing
comprehensive spatial distribution analysis of populations of messenger RNAs (mRNAs) and proteins in tissue
processed for expansion microscopy (ExM)). The groundbreaking technological advantage of ExM, which was
recently developed by Dr. Edward S. Boyden (Dept. Biol. Engin., Media Lab and Dept. Brain Cognit. Sci., MIT,
Cambridge, MA) and colleagues, is the ability to isotropically expand tissue and increase the size of the biological
structures. This allows nanoscale-resolution, light-microscopic imaging of small objects that are too small to be
resolved without expansion due to the diffraction limit of light. Among other benefits, ExM allows those small
structures to be imaged with a wider range of microscopy techniques. Processing tissue for ExM also allows
repeated hybridization (for investigations of mRNAs) and/or repeated antibody staining (for investigations of
proteins) of the same tissue, combined with repeated microscopic imaging rounds. Each round yields adjacent,
high-magnification, single field-of-view image stacks, consisting of at least one morphology reference channel
showing neuronal sub-cellular structures (somas, axons, dendrites, dendritic spines, synapses) as well as one
or several info channels showing mRNAs and/or proteins. Comprehensive analysis of the spatial distribution of
populations of mRNAs and proteins in neurons in situ requires assembling the image stacks of all performed
rounds into a single, seamless and aligned, three-dimensional (3D) ExM image, which is high-dimensional and
can be several terabytes in size. However, this presents a number of computational challenges with respect to
microscopy image registration, segmentation and analysis. The game-changing innovation in NeuroExM is the
ability to perform all of these tasks without the need to have a computer scientist on staff to run the existing,
individual lab-based software scripts developed for each step of this kind of complex analysis. This is made
possible by implementing a number of significant technical innovations into NeuroExM. Based on pilot work
performed in collaboration with the Boyden lab during preparation of this proposal, we are convinced that
NeuroExM will make a significant impact on the field of neuroscience research. Specifically, the combination of
ExM and NeuroExM will enable substantial advancements in research studies focusing on alterations in the
spatial transcriptome and proteome of neurons associated with neurodevelopmental, neuropsychiatric,
neurodegenerative and neurological disorders as well as in aging research and drug development. Ultimately,
this will result in an improved basis for developing novel treatment strategies for a wide spectrum of complex
brain diseases. In Phase I we will demonstrate feasibility of this novel technology by developing prototype
software; work in Phase II will focus on creating the full functionality of NeuroExM for commercial release. We
will perform extensive feasibility studies, product validation and usability studies of NeuroExM in close
collaboration with the Boyden lab. A competing technology is not available.
抽象的
该项目描述了 NeuroExM™ 的开发,这是一个高度创新的系统,用于执行
组织中信使 RNA (mRNA) 和蛋白质群体的综合空间分布分析
ExM 的突破性技术优势,即用于扩展显微镜 (ExM) 的处理。
最近由 Edward S. Boyden 博士(麻省理工学院生物工程系、媒体实验室和脑认知科学系)开发,
马萨诸塞州剑桥市)及其同事的研究成果是,能够各向同性地扩展组织并增加生物体的尺寸。
这使得能够对小到无法观察到的小物体进行纳米级分辨率的光学显微成像。
由于光的衍射极限,ExM 允许在没有扩展的情况下解决。
还可以使用更广泛的显微镜技术对组织进行成像。
重复杂交(用于研究 mRNA)和/或重复抗体染色(用于研究 mRNA)
相同组织的蛋白质),结合重复的显微成像轮次,每轮都会产生相邻的、
高放大率、单视场图像堆栈,由至少一个形态学参考通道组成
显示神经元亚细胞结构(胞体、轴突、树突、树突棘、突触)以及一种
或显示 mRNA 和/或蛋白质空间分布的综合分析的多个信息通道。
原位神经元中的 mRNA 和蛋白质群体需要组装所有执行的图像堆栈
舍入为单个、无缝且对齐的三维 (3D) ExM 图像,该图像是高维且
大小可能为数 TB,但是,这带来了许多计算挑战。
NeuroExM 的颠覆性创新是显微图像配准、分割和分析。
能够执行所有这些任务,而无需配备计算机科学家来运行现有的、
为这种复杂分析的每个步骤开发了单独的基于实验室的软件脚本。
基于试点工作,通过在 NeuroExM 中实施一些重大技术创新,这成为可能。
在准备本提案期间与博伊登实验室合作进行,我们确信
NeuroExM 将对神经科学研究领域产生重大影响。
ExM 和 NeuroExM 将使专注于改变的研究取得实质性进展
与神经发育、神经精神、
最终,神经退行性疾病和神经系统疾病以及衰老研究和药物开发。
这将为开发针对广泛的复杂疾病的新治疗策略奠定更好的基础
在第一阶段,我们将通过开发原型来证明这项新技术的可行性。
软件;第二阶段的工作将集中于创建 NeuroExM 的完整功能以供商业发布。
将密切对 NeuroExM 进行广泛的可行性研究、产品验证和可用性研究
与博伊登实验室的合作不可用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JACOB R GLASER其他文献
JACOB R GLASER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JACOB R GLASER', 18)}}的其他基金
Microscope system for large scale optical imaging of neuronal activity using kilohertz frame rates
使用千赫兹帧速率对神经元活动进行大规模光学成像的显微镜系统
- 批准号:
10541683 - 财政年份:2022
- 资助金额:
$ 76.02万 - 项目类别:
System for Volumetric 2-photon Imaging of Neuroactivity Using Light Beads Microscopy
使用光珠显微镜对神经活动进行体积 2 光子成像的系统
- 批准号:
10755027 - 财政年份:2022
- 资助金额:
$ 76.02万 - 项目类别:
System for Volumetric 2-photon Imaging of Neuroactivity Using Light Beads Microscopy
使用光珠显微镜对神经活动进行体积 2 光子成像的系统
- 批准号:
10603310 - 财政年份:2022
- 资助金额:
$ 76.02万 - 项目类别:
Microscope system for large scale optical imaging of neuronal activity using kilohertz frame rates
使用千赫兹帧速率对神经元活动进行大规模光学成像的显微镜系统
- 批准号:
10384932 - 财政年份:2022
- 资助金额:
$ 76.02万 - 项目类别:
AI based system for longitudinal, repeated measure analyses of freely moving C. elegans worms
基于人工智能的系统,用于对自由移动的秀丽隐杆线虫进行纵向、重复测量分析
- 批准号:
10258638 - 财政年份:2021
- 资助金额:
$ 76.02万 - 项目类别:
Next generation axonal quantification and classification using AI
使用人工智能的下一代轴突量化和分类
- 批准号:
10698843 - 财政年份:2021
- 资助金额:
$ 76.02万 - 项目类别:
相似国自然基金
ALA光动力上调炎症性成纤维细胞ZFP36抑制GADD45B/MAPK通路介导光老化皮肤组织微环境重塑的作用及机制研究
- 批准号:82303993
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
YAP1-TEAD通过转录调控同源重组修复介导皮肤光老化的作用机制
- 批准号:82371567
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
微纳核壳结构填充体系构建及其对聚乳酸阻燃、抗老化、降解和循环的作用机制
- 批准号:52373051
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
下丘脑乳头上核-海马齿状回神经环路在运动延缓认知老化中的作用及机制研究
- 批准号:82302868
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
单细胞多组学解析脐带间充质干细胞优势功能亚群重塑巨噬细胞极化治疗皮肤光老化的作用与机制
- 批准号:82302829
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Project 3: 3-D Molecular Atlas of cerebral amyloid angiopathy in the aging brain with and without co-pathology
项目 3:有或没有共同病理的衰老大脑中脑淀粉样血管病的 3-D 分子图谱
- 批准号:
10555899 - 财政年份:2023
- 资助金额:
$ 76.02万 - 项目类别:
Project 2: 3-D Molecular atlas of AD proteinopathy
项目 2:AD 蛋白病的 3-D 分子图谱
- 批准号:
10555898 - 财政年份:2023
- 资助金额:
$ 76.02万 - 项目类别:
Tissue-engineered Aged B Cell Immune Organoid to Study Antibody Secreting Cell Differentiation Trajectory
组织工程老化 B 细胞免疫类器官用于研究抗体分泌细胞分化轨迹
- 批准号:
10804886 - 财政年份:2023
- 资助金额:
$ 76.02万 - 项目类别:
Project 1: 3-D Molecular atlas of the aging brain
项目 1:衰老大脑的 3D 分子图谱
- 批准号:
10555897 - 财政年份:2023
- 资助金额:
$ 76.02万 - 项目类别: