ClearScope
清晰范围
基本信息
- 批准号:10019728
- 负责人:
- 金额:$ 131.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAdoptionAnimal ModelAreaAxonBehavioral ResearchBenchmarkingBiotechnologyBrainBrain DiseasesBrain imagingCollaborationsCommunitiesComplexComputer softwareConfocal MicroscopyData SetDendritesDendritic SpinesDetectionDevelopmentHumanImageImmersionLateralLegal patentLightLightingLiteratureMethodsMichiganMicroscopeMicroscopyMusNational Institute of Mental HealthNeurologicNeuronsNeurosciences ResearchNew YorkOpticsPatternPerformancePharmacologyPhasePhotobleachingPhototoxicityPreparationProcessProductionRattusRefractive IndicesResearchResolutionSocietiesSpecimenSpeedStructureSubcellular structureSystemTechniquesTechnologyTestingThickThree-Dimensional ImageTissuesTransgenic AnimalsTranslationsUniversitiesValidationVaricositybasebrain researchdesignex vivo imagingimprovedin vivoinnovationinsightmicroscopic imagingmultiphoton microscopyneural networkneuropsychiatrynew technologynonhuman primatenovelprototyperesearch and developmenttooltreatment strategyusabilityuser-friendly
项目摘要
Combined in vivo and ex vivo three-dimensional (3D) whole-brain imaging of non-transgenic and
transgenic animal models holds the promise of novel insights into neural network connectivity patterns.
With regard to ex vivo light microscopic imaging of 3D whole-brain datasets, the best approach is brain
clearing followed by whole-brain light sheet microscopy (LSM) because of its unique combination of
speed, 3D resolving power, and low phototoxicity compared to confocal and multiphoton microscopy.
Unlike other methods, the combined brain clearing / LSM approach makes it possible to use intact tissue
and retain all intracellular connections within the brain structure. However, LSM systems commercially
available are not suitable for ex vivo light microscopic imaging of 3D whole-brain datasets in advanced
connectomics research. Recently, Dr. Raju Tomer (Dept. Biol. Sci., Columbia Univ., New York, NY)
developed light sheet theta microscopy (LSTM), essentially a unique arrangement of two light sheets
oblique to the specimen and one detection objective perpendicular to the specimen. This novel
microscope is the basis for a number of capabilities in LSTM that are not all available with any other
commercially available LSM systems. The LSTM technology has distinct advantages over confocal and
other light sheet microscopes, including the unmatched ability to image thicker tissue specimens over a
larger lateral area (XY) at higher optical resolutions, while maintaining fast imaging speed, high imaging
quality, and low photo-bleaching. This promising technology serves as the basis for this Lab to
Marketplace proposal to develop the ClearScope™, which refines and improves Dr. Tomer's original
LSTM system to create a successful commercial microscope for wide-spread adoption. The key technical
objectives for developing the ClearScope as a commercial product include creating and testing (i) a
ClearScope prototype based on an optimized microscope hardware design; (ii) novel microscope
hardware components for the ClearScope, comprising a novel chamber that contains the investigated
specimen and the immersion medium, and a novel detection objective changer; (iii) novel control and
image acquisition software for the ClearScope; and importantly, (iv) novel software that surpasses the
existing state-of-the-art technology to assemble acquired image stacks into large 3D image volumes
exceeding 10TB without need to downsample the image information. The production version of the
ClearScope will benefit the neuroscience research community, pharmacological and biotechnological
R&D, and society in general by improving understanding of neural network connectivity patterns as well
as the neuropathological underpinnings of the large-scale connectional alterations associated with
human neuropsychiatric and neurological conditions. In particular, this will result in an improved basis
for developing novel treatment strategies for complex brain diseases.
非转基因和离体联合体内和离体三维 (3D) 全脑成像
转基因动物模型有望为神经网络连接模式提供新的见解。
对于 3D 全脑数据集的离体光显微成像,最好的方法是大脑
透明化之后进行全脑光片显微镜 (LSM),因为其独特的组合
与共焦和多光子显微镜相比,速度快、3D 分辨率高、光毒性低。
与其他方法不同,结合大脑清除/LSM 方法可以使用完整的组织
并保留大脑结构内的所有细胞内连接然而,LSM 系统商业化。
现有的不适合先进的 3D 全脑数据集的离体光学显微成像
最近,Raju Tomer 博士(纽约州哥伦比亚大学生物科学系)
开发了光片θ显微镜(LSTM),本质上是两个光片的独特排列
倾斜于样本和一个垂直于样本的检测物镜这一新颖的。
显微镜是 LSTM 中许多功能的基础,而其他任何功能都无法提供这些功能。
商用LSM系统与共焦和LSTM技术相比具有明显的优势。
其他光片显微镜,包括在较厚的组织样本上成像的无与伦比的能力
更高光学分辨率下更大的横向面积(XY),同时保持快速成像速度、高成像
质量和低光漂白这一有前途的技术是该实验室的基础。
开发 ClearScope™ 的市场提案,该提案改进并改进了 Tomer 博士的原创产品
LSTM 系统是打造成功的商用显微镜并得到广泛采用的关键技术。
将 ClearScope 开发为商业产品的目标包括创建和测试 (i)
基于优化的显微镜硬件设计的 ClearScope 原型 (ii) 新型显微镜;
ClearScope 的硬件组件,包括一个新颖的腔室,其中包含所研究的
样本和浸没介质,以及新颖的检测物镜变换器;(iii)新颖的控制和
ClearScope 的图像采集软件;重要的是,(iv) 超越以往的新颖软件
现有最先进的技术可将采集的图像堆栈组装成大型 3D 图像体积
超过 10TB,无需对图像信息进行下采样。
ClearScope 将有利于神经科学研究界、药理学和生物技术领域
通过提高对神经网络连接模式的理解,研发和整个社会
作为与相关的大规模连接改变的神经病理学基础
特别是,这将改善人类神经精神和神经系统疾病的基础。
为复杂的脑部疾病开发新的治疗策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JACOB R GLASER其他文献
JACOB R GLASER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JACOB R GLASER', 18)}}的其他基金
Microscope system for large scale optical imaging of neuronal activity using kilohertz frame rates
使用千赫兹帧速率对神经元活动进行大规模光学成像的显微镜系统
- 批准号:
10541683 - 财政年份:2022
- 资助金额:
$ 131.31万 - 项目类别:
System for Volumetric 2-photon Imaging of Neuroactivity Using Light Beads Microscopy
使用光珠显微镜对神经活动进行体积 2 光子成像的系统
- 批准号:
10755027 - 财政年份:2022
- 资助金额:
$ 131.31万 - 项目类别:
System for Volumetric 2-photon Imaging of Neuroactivity Using Light Beads Microscopy
使用光珠显微镜对神经活动进行体积 2 光子成像的系统
- 批准号:
10603310 - 财政年份:2022
- 资助金额:
$ 131.31万 - 项目类别:
Microscope system for large scale optical imaging of neuronal activity using kilohertz frame rates
使用千赫兹帧速率对神经元活动进行大规模光学成像的显微镜系统
- 批准号:
10384932 - 财政年份:2022
- 资助金额:
$ 131.31万 - 项目类别:
AI based system for longitudinal, repeated measure analyses of freely moving C. elegans worms
基于人工智能的系统,用于对自由移动的秀丽隐杆线虫进行纵向、重复测量分析
- 批准号:
10258638 - 财政年份:2021
- 资助金额:
$ 131.31万 - 项目类别:
Next generation axonal quantification and classification using AI
使用人工智能的下一代轴突量化和分类
- 批准号:
10698843 - 财政年份:2021
- 资助金额:
$ 131.31万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
- 批准号:
10673513 - 财政年份:2023
- 资助金额:
$ 131.31万 - 项目类别:
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
- 批准号:
10831226 - 财政年份:2023
- 资助金额:
$ 131.31万 - 项目类别:
3D force sensing insoles for wearable, AI empowered, high-fidelity gait monitoring
3D 力传感鞋垫,用于可穿戴、人工智能支持的高保真步态监控
- 批准号:
10688715 - 财政年份:2023
- 资助金额:
$ 131.31万 - 项目类别:
MagPAD: Magnetic Puncture, Access, and Delivery of Large Bore Devices to the Heart Via the Venous System
MagPAD:通过静脉系统对大口径装置进行磁穿刺、进入和输送至心脏
- 批准号:
10600737 - 财政年份:2023
- 资助金额:
$ 131.31万 - 项目类别:
Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
- 批准号:
10602275 - 财政年份:2023
- 资助金额:
$ 131.31万 - 项目类别: