System for Volumetric 2-photon Imaging of Neuroactivity Using Light Beads Microscopy
使用光珠显微镜对神经活动进行体积 2 光子成像的系统
基本信息
- 批准号:10755027
- 负责人:
- 金额:$ 99.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-05 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Abstract
This project aims to develop and commercialize the Volumetric Calcium Imaging 2-Photon Activity Microscope,
vCAm™, a revolutionary new 2-photon microscope based on a technological breakthrough called Light Beads
Microscopy (LBM) that was recently developed by Dr. Alipasha Vaziri and co-workers (Lab. Neurotechnol.
Biophys., Rockefeller Univ., New York, NY). The game-changing innovation in the vCAm is the ability to perform
unparalleled in vivo calcium imaging of individual neurons at cellular resolution nearly simultaneously in one or
more cytoarchitectonic regions of the mouse cerebral cortex, and nearly simultaneously in 30 imaging planes
each ~16 µm apart (i.e., up to a total depth of 500 µm, encompassing layers I-V) at a full-frame rate of at least
12 Hertz. These capabilities are crucial for ultimately correlating stimuli and/or behavioral states of an animal
discretely, in a context-dependent manner, with the activity of all neurons in the brain of the animal that are
involved in this process, which requires simultaneous recording of the activity of hundreds of thousands of
neurons in a multi-regional and multi-layer manner. However, contemporary 2-photon microscopy suffers from
a fundamental limitation. Neuroscience researchers need to record simultaneous interactions between the
sensory, motor and visual regions of the brain, but it is difficult to capture the activity in such a broad volume of
the brain without sacrificing resolution or speed. The LBM technology pushes the limits of imaging speed to the
physical nature of fluorescence itself by eliminating the “dead time” between sequential laser pulses when no
neuroactivity is recorded and at the same time the need for scanning. With this approach, the only limit to the
rate at which samples can be recorded is the time that it takes the tags to fluoresce, meaning wide volumes of
the brain can be recorded within the same time it would take a conventional two-photon microscope to capture
a much smaller number of brain cells. Other technology, such as miniaturized 2-photon microscopes that can be
carried on the head of freely moving rodents, functional magnetic resonance imaging, inserting electrodes into
the brain, or fiber photometry do not fulfill this need. This project will improve upon the original LBM invention to
create a commercial product for disseminating this important new technology. Based on pilot work performed at
Dr. Vaziri's laboratory, it is clear that the vCAm will make a significant impact on the field of neuroscience
research, including advancing studies focused on alterations in the circuitry of the central nervous system
associated with neurodevelopmental, neuropsychiatric and neurodegenerative disorders. Ultimately, this will
result in an improved basis for developing novel treatment strategies for a wide spectrum of complex brain
diseases. In Phase I we will demonstrate the feasibility of this novel technology by developing prototype hardware
and software; work in Phase II will focus on creating the full functionality of the vCAm for commercial release.
We will perform extensive feasibility studies, product validation and usability studies of the vCAm in close
collaboration with Dr. Vaziri. A competing technology is not commercially available.
抽象的
该项目旨在开发体积钙成像二光子活动显微镜并将其商业化,
vCAm™,一款革命性的新型 2 光子显微镜,基于称为光珠的技术突破
最近由 Alipasha Vaziri 博士及其同事(Lab. Neurotechnol.
Biophys., Rockefeller Univ., New York, NY)vCAm 改变游戏规则的是执行能力。
在一个或多个细胞中几乎同时以细胞分辨率对单个神经元进行无与伦比的体内钙成像
小鼠大脑皮层的更多细胞结构区域,并且几乎同时在 30 个成像平面上
每个间隔约 16 µm(即总深度达 500 µm,包含 I-V 层),全帧速率至少为
12 赫兹。这些功能对于最终关联动物的刺激和/或行为状态至关重要。
离散地,以上下文相关的方式,与动物大脑中所有神经元的活动相关
参与这个过程,需要同时记录数十万个的活动
然而,当代的 2 光子显微镜却面临着多区域和多层神经元的问题。
神经科学研究人员需要记录之间的同时相互作用。
大脑的感觉、运动和视觉区域,但很难捕获如此大范围的活动
LBM 技术将成像速度的极限推向了极限。
通过消除连续激光脉冲之间的“死区时间”,当没有荧光时,荧光本身的物理性质
记录神经活动并同时进行扫描,是这种方法的唯一限制。
可以记录样本的速率是标签发出荧光所需的时间,这意味着大量的
与传统双光子显微镜捕获大脑的时间相同
其他技术,例如可以使用更少数量的脑细胞。
携带在自由活动的啮齿动物的头上,功能性磁共振成像,将电极插入
大脑或光纤光度测定法无法满足这一需求,该项目将改进原来的 LBM 发明。
基于在进行的试点工作,创建一个商业产品来传播这项重要的新技术。
Vaziri博士的实验室,显然vCAm将对神经科学领域产生重大影响
研究,包括针对中枢神经系统回路改变的推进研究
最终,这将与神经发育、神经精神和神经退行性疾病相关。
为开发针对各种复杂大脑的新型治疗策略奠定了基础
在第一阶段,我们将通过开发原型硬件来证明这项新技术的可行性。
和软件;第二阶段的工作将侧重于创建 vCAm 的全部功能以供商业发布。
我们将密切对 vCAm 进行广泛的可行性研究、产品验证和可用性研究
与 Vaziri 博士的合作尚未实现商业化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JACOB R GLASER其他文献
JACOB R GLASER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JACOB R GLASER', 18)}}的其他基金
Microscope system for large scale optical imaging of neuronal activity using kilohertz frame rates
使用千赫兹帧速率对神经元活动进行大规模光学成像的显微镜系统
- 批准号:
10541683 - 财政年份:2022
- 资助金额:
$ 99.98万 - 项目类别:
System for Volumetric 2-photon Imaging of Neuroactivity Using Light Beads Microscopy
使用光珠显微镜对神经活动进行体积 2 光子成像的系统
- 批准号:
10603310 - 财政年份:2022
- 资助金额:
$ 99.98万 - 项目类别:
Microscope system for large scale optical imaging of neuronal activity using kilohertz frame rates
使用千赫兹帧速率对神经元活动进行大规模光学成像的显微镜系统
- 批准号:
10384932 - 财政年份:2022
- 资助金额:
$ 99.98万 - 项目类别:
AI based system for longitudinal, repeated measure analyses of freely moving C. elegans worms
基于人工智能的系统,用于对自由移动的秀丽隐杆线虫进行纵向、重复测量分析
- 批准号:
10258638 - 财政年份:2021
- 资助金额:
$ 99.98万 - 项目类别:
Next generation axonal quantification and classification using AI
使用人工智能的下一代轴突量化和分类
- 批准号:
10698843 - 财政年份:2021
- 资助金额:
$ 99.98万 - 项目类别:
相似国自然基金
体积式太阳能集热器内辐射热对流不稳定性与传热机理研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向非结构网格的并行全隐式有限体积格子Boltzmann方法研究
- 批准号:12101588
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高超声速边界层转捩隐式大涡模拟自适应耗散有限体积格式研究
- 批准号:12002359
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
体积吸收式复合太阳能分频液冷高倍光电光热接收器工作机理研究及优化
- 批准号:51776091
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
变分重构非结构网格高精度有限体积方法研究
- 批准号:11672160
- 批准年份:2016
- 资助金额:80.0 万元
- 项目类别:面上项目
相似海外基金
Concurrent volumetric imaging with multimodal optical systems
多模态光学系统的并行体积成像
- 批准号:
10727499 - 财政年份:2023
- 资助金额:
$ 99.98万 - 项目类别:
Optimization, Application, and Dissemination of Imaging Modules for High-speed Mesoscopic Volumetric Recording of Neuroactivity in Scattering Brains
散射脑神经活动高速介观体积记录成像模块的优化、应用和传播
- 批准号:
10657354 - 财政年份:2022
- 资助金额:
$ 99.98万 - 项目类别:
Open-source miniaturized two-photon microscopes for large field-of-view and volumetric imaging
用于大视场和体积成像的开源小型双光子显微镜
- 批准号:
10516900 - 财政年份:2022
- 资助金额:
$ 99.98万 - 项目类别:
Open-source miniaturized two-photon microscopes for large field-of-view and volumetric imaging
用于大视场和体积成像的开源小型双光子显微镜
- 批准号:
10675751 - 财政年份:2022
- 资助金额:
$ 99.98万 - 项目类别:
System for Volumetric 2-photon Imaging of Neuroactivity Using Light Beads Microscopy
使用光珠显微镜对神经活动进行体积 2 光子成像的系统
- 批准号:
10603310 - 财政年份:2022
- 资助金额:
$ 99.98万 - 项目类别: