The structure of cut locus and global Riemannian geometry
割轨迹的结构与全局黎曼几何
基本信息
- 批准号:09440037
- 负责人:
- 金额:$ 3.97万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Recently, it was showed that the total length of cut locus of Riemannian surface is finite in the study of the structure of cut locus and by using this Ambrose's problem of surface was answered affirmatively. The purposes of this research are to study the structure of cut locus of Riemannian manifold and to study global Riemannian geometry by using the above results.The most main result that the distance function to the cut locus is Lipshitz continuous is proved the 1'st year, and now printing (joint work with M.Tanaka). It follows that the distance is derived naturally on the cut locus. It happens the following interesting question "what is the natural geometric structure on the cut locus?''In the study of some kind of stratification of cut locus of CィイD1∞ィエD1 Riemannian manifold, at the beginning, we tried the problem "Is the cut locus locally a submanifold around any cut point except for any subset which is of local dimensional Hausdorff measure zero?" We proved this affirmatively by very complicated method (j.w. with M.Tanaka.). Now, we are searching simpler method.Also we studied the set of critical points of distance function which is closely related with the cut locus. We proved last year that the set of all critical values of the distance function for a submanifold of a 3-dimensional complete Riemannian manifold is of Lebesgue measure zero (Sard type theorem). Now, we extend this result that ィイD71(/)2ィエD7-dimensional Hausdorff measure is zero (j.w. with M.Tanaka). By using method we expect that in the 4-dimensional case it is of Lebesgue measure zero.We cannot answered Ambrose's problem of general dimension, but we get the evaluation of face of Voronoi domain in any Hadamard manifold and showed that the subset (essential cut locus) of the cut locus which is contained any critical point of distance function is not so complicated in the case of low dimensional convex polytope.
最近,结果表明,在研究切割基因座的结构的研究中,黎曼表面的切割基因座的总长度是有限的,并且通过使用该安布罗斯的表面问题得到了合理的回答。这项研究的目的是研究Riemannian歧管的切割基因座的结构,并通过使用上述结果研究全球Riemannian几何形状。最主要的结果是,切割基因座的距离函数是lipshitz Ryne的连续证明是1年级的,现在是1',现在是印刷(与M.Tanaka的联合工作)。因此,距离自然派生在切割基因座上。发生了以下有趣的问题:“切割基因座上的自然几何结构是什么?”在研究某种类型的ciyd1∞d1riemannian歧管的切割基因座的某种分层时,一开始,我们尝试了问题。 M.Tanaka。)。 D7二维的Hausdorff测量为零(J.W.使用M.Tanaka)。在低维凸多属的情况下,功能并不是那么复杂。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Y.Hiramine et al.: "Characterization of translation planes by orbit length" Geometricae Dedicata. (発表予定).
Y. Hiramine 等人:“通过轨道长度表征平移平面”Geometricae Dedicata(即将出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y. Hiramine et al.: "Characterization of translation planes by orbit length"Geometricae Dedicata. 78. 69-80 (1999)
Y. Hiramine 等人:“通过轨道长度表征平移平面”Geometricae Dedicata。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y. Hiramine & A. Garciano: "On Sylow Subgroups of Abelian Affine Difference Sets"Designs, Codes and Cryptography. (発売予定).
Y. Hiramine 和 A. Garciano:“论阿贝尔仿射差集的 Sylow 子群”设计、代码和密码学(待发布)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
J. Itoh & M. Tanaka: "The Lipschitz continuity of the distance function to the cut locus"Trans. A.M.S.. (発表予定).
J. Itoh 和 M. Tanaka:“距离函数到切割轨迹的 Lipschitz 连续性”Trans。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Hiramine & C.Suetake: "A note on the Aschbacher biplanes of order 11" ″Mostly Finite Geometries″, edited by N. L. Johnson, Marcel Dekker, Inc. New York-Basel-Hong Kong. 215-225 (1997)
Y.Hiramine 和 C.Suetake:“关于 11 阶阿施巴赫双翼飞机的注释”“大部分有限几何”,由 N. L. Johnson、Marcel Dekker, Inc. 编辑。纽约-巴塞尔-香港 (1997)。 )
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ITOH Jin-ichi其他文献
ITOH Jin-ichi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ITOH Jin-ichi', 18)}}的其他基金
New directions of research of cut locus and related topics
切割轨迹及相关课题研究新方向
- 批准号:
23540098 - 财政年份:2011
- 资助金额:
$ 3.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Related problems of cut locus and a generalization of Jacobi's last theorem
切割轨迹的相关问题及雅可比最后定理的推广
- 批准号:
20540085 - 财政年份:2008
- 资助金额:
$ 3.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Comprehensive studies of cut locus
切割轨迹综合研究
- 批准号:
17540085 - 财政年份:2005
- 资助金额:
$ 3.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The relation between Riemannian geometry and discrete geometry from the view point of minimulity
从极小值的角度看黎曼几何与离散几何的关系
- 批准号:
14540086 - 财政年份:2002
- 资助金额:
$ 3.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometry of polyhedron from the view point of differential geometry
从微分几何的角度看多面体几何
- 批准号:
12640079 - 财政年份:2000
- 资助金额:
$ 3.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似国自然基金
雀形目鸟类长距离迁徙的形态、行为、代谢和飞行功能适应性研究
- 批准号:32171490
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
基于多孔有机聚合物功能位点空间距离调控构筑催化羰基化协同体系
- 批准号:
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:面上项目
2p14区增强子致病SNP通过远距离调控ACTR2基因表达影响类风湿性关节炎的功能机制研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
活性位空间距离对双功能催化剂性能的影响及优化
- 批准号:
- 批准年份:2020
- 资助金额:64 万元
- 项目类别:面上项目
片段化生境中常见种和稀有种的共存机制:基于性状种内变异和多度的关系
- 批准号:31901211
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Elucidation of the function of learner's expression in distance education and study of learning improvement by expression promotion system
学习者表达在远程教育中的作用阐释及表达促进系统促进学习的研究
- 批准号:
23H01008 - 财政年份:2023
- 资助金额:
$ 3.97万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Investigating the molecular mechanisms of membrane remodeling by coronaviruses
研究冠状病毒膜重塑的分子机制
- 批准号:
10724399 - 财政年份:2023
- 资助金额:
$ 3.97万 - 项目类别:
Advancing the Study of Social Isolation, Loneliness, and Cognitive Functioning in Older Adults Through the Use of Integrative Data Analysis
通过综合数据分析推进老年人的社会孤立、孤独和认知功能研究
- 批准号:
10718746 - 财政年份:2023
- 资助金额:
$ 3.97万 - 项目类别:
Consequences of social isolation during the COVID-19 pandemic in older adults with and without Alzheimer's disease
COVID-19 大流行期间社交隔离对患有和不患有阿尔茨海默病的老年人的影响
- 批准号:
10585667 - 财政年份:2023
- 资助金额:
$ 3.97万 - 项目类别:
The Enduring Effects of COVID-19 Infection on Psychological Factors, Cognition, and Social Integration inRecently Homeless Veterans
COVID-19 感染对最近无家可归的退伍军人的心理因素、认知和社会融入的持久影响
- 批准号:
10640039 - 财政年份:2023
- 资助金额:
$ 3.97万 - 项目类别: