Comprehensive studies of cut locus

切割轨迹综合研究

基本信息

  • 批准号:
    17540085
  • 负责人:
  • 金额:
    $ 2.3万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2005
  • 资助国家:
    日本
  • 起止时间:
    2005 至 2007
  • 项目状态:
    已结题

项目摘要

We studied the cut loci and related several topics, for example, the farthest points or simple closed geodesies on convex surfaces and got many results.As the problem to determine the cut locus, we proved that some compact Liouville manifolds have the property that the cut loci of general points are smoothly embedded closed disks of codimension one. Ellipsoids with distinct axes are typical examples of such manifolds. We discussed on an extension to general dimension of Jacobi's last theorem(conjugate loci on ellipsoids have exact four cusps), and we got some remarkable progress and are planning to continue the research. Moreover, as the related topics, we got a modern proof of thread constructions of general quadric(hyper)surfaces by using the first integral (jointed work with K. Kiyohara).As the problem to study structures of cut locus, under some non-degenerating assumption we proved that the cut locus admits a nice stratification, some cone structure locally. Under stronger assumptions we have simpler procedure of Morse theory by using of critical points of distance functions (jointed work with T. Sakai).We established, for general convex surfaces, inequalities involving the diameter, the area and the length of simple closed quasi-geodesics (jointed work with C. Vilcu).Using the above simple closed quasi-geodesics we proved that any polyhedra are unfolded to a planar simple polygon by some cutting (jointed work with J. O'Rourke, C. Vilcu).We discussed several other unfolding by using simple clodes quasi geodesics, also
我们研究了剪切的基因座,并将几个主题与凸面上的最远点或简单的封闭测量线相关联,并获得了许多结果。当问题确定切割基因座时,我们证明了某些紧凑的liouville歧管具有一般点的剪切位点,即一般点的剪切位点是平稳嵌入了封闭的封闭式impormension immimensimensimensimensimensimensimensimensimensimensimensimentimentimentimentimentimentimentimentimentimentimentimentimentimentimentimentimentimentimentimentimentimentimentimentiment的属性。具有不同轴的椭圆形是这种歧管的典型例子。我们讨论了雅各比的最后一个定理的一般维度的扩展(椭圆形的结合位点具有四个尖端),我们取得了一定的进步,并计划继续进行研究。此外,作为相关主题,我们通过使用第一个积分(与K. kiyohara的连接工作)获得了通用四边形(超级)表面的线程结构的现代证明。由于研究切割基因座的结构的问题,在某些非层次的假设下,我们证明,我们证明了cutus cutus cutus cuts cut supple cut supple cutse conse noce sentraciention a pene sole bene local inste ince ly Blocy。 Under stronger assumptions we have simpler procedure of Morse theory by using of critical points of distance functions (jointed work with T. Sakai).We established, for general convex surfaces, inequalities involving the diameter, the area and the length of simple closed quasi-geodesics (jointed work with C. Vilcu).Using the above simple closed quasi-geodesics we proved that any polyhedra are unfolded to a planar simple多边形通过一些切割(与J. O'Rourke,C。Vilcu的连接工作)。我们通过使用简单的Clodes quasi Geodesics讨论了其他几个展开

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
閉じていない空間曲線の絶対全曲率
开放空间曲线的绝对总曲率
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    榎本 一之;伊藤 仁一;R.Sinclair
  • 通讯作者:
    R.Sinclair
Cut locus and geodesics on convex surfaces
凸面上的切割轨迹和测地线
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Itoh;C. Vilcu;伊藤 仁一;J. Itoh;酒井 隆;T. Sakai;伊藤 仁一;J. Itoh;清原 一吉;K. Kiyohara;伊藤 仁一
  • 通讯作者:
    伊藤 仁一
Costin Vilcu, Geodesic Characterizations of isoceles Tetrahedra
Costin Vilcu,等腰四面体的测地线特征
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J.;Itoh
  • 通讯作者:
    Itoh
Tightness of graphs:reahzations with the two-piece-property
图的紧密性:二件式性质的实现
Joel Rouyer, Costin Vilcu, Antipodal convex hyp ersur faces
Joel Rouyer、Costin Vilcu、Antipodal 凸面 hyp ersur 面
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J.;Itoh
  • 通讯作者:
    Itoh
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ITOH Jin-ichi其他文献

ITOH Jin-ichi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ITOH Jin-ichi', 18)}}的其他基金

New directions of research of cut locus and related topics
切割轨迹及相关课题研究新方向
  • 批准号:
    23540098
  • 财政年份:
    2011
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Related problems of cut locus and a generalization of Jacobi's last theorem
切割轨迹的相关问题及雅可比最后定理的推广
  • 批准号:
    20540085
  • 财政年份:
    2008
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The relation between Riemannian geometry and discrete geometry from the view point of minimulity
从极小值的角度看黎曼几何与离散几何的关系
  • 批准号:
    14540086
  • 财政年份:
    2002
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometry of polyhedron from the view point of differential geometry
从微分几何的角度看多面体几何
  • 批准号:
    12640079
  • 财政年份:
    2000
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The structure of cut locus and global Riemannian geometry
割轨迹的结构与全局黎曼几何
  • 批准号:
    09440037
  • 财政年份:
    1997
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

The projective geometry of Zoll surfaces and the Cut locus on Finsler manifolds
Zoll 曲面的射影几何和 Finsler 流形上的切割轨迹
  • 批准号:
    20K03595
  • 财政年份:
    2020
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Convexity and global behavior of geodesics on Finsler manifolds
Finsler 流形上测地线的凸性和全局行为
  • 批准号:
    18K03314
  • 财政年份:
    2018
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Cut locus and variational problems with constaints on Finsler manifolds
求解 Finsler 流形上的轨迹和变分问题
  • 批准号:
    17K05226
  • 财政年份:
    2017
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
An advanced study of cut locus and related topics
切割轨迹及相关主题的高级研究
  • 批准号:
    26400072
  • 财政年份:
    2014
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New directions of research of cut locus and related topics
切割轨迹及相关课题研究新方向
  • 批准号:
    23540098
  • 财政年份:
    2011
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了