非線形楕円型方程式に対する変分解析の新展開

非线性椭圆方程变分分析的新进展

基本信息

  • 批准号:
    23K03178
  • 负责人:
  • 金额:
    $ 3万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2023
  • 资助国家:
    日本
  • 起止时间:
    2023-04-01 至 2028-03-31
  • 项目状态:
    未结题

项目摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

足達 慎二其他文献

足達 慎二的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('足達 慎二', 18)}}的其他基金

準線形楕円型偏微分方程式の解構造への変分的アプローチ
拟线性椭圆偏微分方程解结构的变分法
  • 批准号:
    18K03362
  • 财政年份:
    2018
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
特異ポテンシャルにおけるハミルトン系に対する変分的研究
奇异势哈密顿系统的变分研究
  • 批准号:
    15740112
  • 财政年份:
    2003
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)

相似海外基金

凝集系の視点による非線形楕円型偏微分方程式の解の解析
从聚集系统的角度分析非线性椭圆偏微分方程的解
  • 批准号:
    24K06794
  • 财政年份:
    2024
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometry of Special Lagrangian equation
特殊拉格朗日方程的几何
  • 批准号:
    22K13909
  • 财政年份:
    2022
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
臨界型非線形楕円型方程式における解の集中現象の研究-余質量を伴う集中-
临界非线性椭圆方程解的集中现象研究 - 附加质量集中 -
  • 批准号:
    21K13813
  • 财政年份:
    2021
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Research on stabilization effect and qualitative properties of standing waves for variational problems with nonlocal interactions
非局域相互作用变分问题驻波镇定效应及定性研究
  • 批准号:
    21K03317
  • 财政年份:
    2021
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
楕円型偏微分方程式の解の対称性と非対称性
椭圆偏微分方程解的对称性和不对称性
  • 批准号:
    20K03686
  • 财政年份:
    2020
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了