Topological Structure of Weak Convergence of Nonadditive Measures

非相加测度弱收敛的拓扑结构

基本信息

  • 批准号:
    23540192
  • 负责人:
  • 金额:
    $ 3.33万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2011
  • 资助国家:
    日本
  • 起止时间:
    2011 至 2013
  • 项目状态:
    已结题

项目摘要

We introduced two explicit metrics for nonadditive measures on a metric space, which are called the Levy-Prokhorov metric and the Fortet-Mourier metric, and investigated their basic properties. Then, we gave a notion of the uniform equi-autocontinuity for a set of nonadditive measures and showed that both the Levy topology and the weak topology have uniform structures on such a set. As a result, we revealed that the Levy topology and the weak topology can be metrized by those explicit metrics.Next, we introduced an asymptotically translatable condition for a nonlinear functional to solve a Choquet integral representation problem for a comonotonically additive, monotone functional on the space of all continuous functions with compact support on a locally compact space.
我们在度量空间上引入了两个明确的指标,以实现非添加度措施,这称为Levy-Prokhorov指标和Fortet-Mourier Mourier Mourtric,并研究了其基本特性。然后,我们给出了一组非添加措施的均匀等上自动内在性的概念,并表明征费拓扑和弱拓扑都在这种集合上都具有统一的结构。结果,我们透露,可以通过那些明确的指标来将征费拓扑和弱拓扑结构化。我们引入了一种非线性功能的渐近转换状态,以解决一个choquet积分表示问题,以解决共生添加的,单位单位型单位孔在全部紧缩的空间上的空间,可在全部紧缩的空间上函数。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Metrizability of Lévy topology on nonadditive measures on a metric space
度量空间上非可加测度的 Lévy 拓扑的可度量性
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Koizumi; K. Watanabe;K. Watanabe;河邊 淳;K. Watanabe;O. Hatori and L Molnar;Jun Kawabe;O. Hatori;Jun Kawabe;O. Hatori and K. Watanabe;Jun Kawabe
  • 通讯作者:
    Jun Kawabe
漸近平行移動可能性をもつ汎関数のショケ積分表現
具有渐近平移可能性的泛函的 Choquet 积分表示
Riesz type integral representations for comonotonically additive functionals(S. Li, X. Wang et al., eds.)
同调可加泛函的 Riesz 型积分表示(S. Li, X. Wang 等人编辑)
The Lévy-Prokhorov topology on nonadditive measures on metric spaces
度量空间上非可加测度的 Lévy-Prokhorov 拓扑
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hiroyasu Mizuguchi;Kichi-Suke Saito and Ryotaro Tanaka;Jun Kawabe;Jun Kawabe;Ryotaro Tanaka and Kichi-Suke Saito;Jun Kawabe
  • 通讯作者:
    Jun Kawabe
Editorial: Nonlinear mathematics for uncertainty and its applications
社论:不确定性的非线性数学及其应用
  • DOI:
    10.1016/j.ijar.2012.11.008
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shoumei Li;Jun Kawabe
  • 通讯作者:
    Jun Kawabe
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KAWABE Jun其他文献

KAWABE Jun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KAWABE Jun', 18)}}的其他基金

Nonlinear integrals in nonadditive measure theory and their study based on a perturbative method
非加性测度论中的非线性积分及其基于微扰法的研究
  • 批准号:
    26400130
  • 财政年份:
    2014
  • 资助金额:
    $ 3.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New smoothness conditions on Riesz spaces with applications to nonadditive measures and Choquet integrals
Riesz 空间上的新平滑条件及其在非加性测度和 Choquet 积分中的应用
  • 批准号:
    20540163
  • 财政年份:
    2008
  • 资助金额:
    $ 3.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Non-additive measure theory in Riesz spaces with certain smoothenss conditions
具有一定平滑条件的Riesz空间中的非可加测度论
  • 批准号:
    18540166
  • 财政年份:
    2006
  • 资助金额:
    $ 3.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Weak order convergence of Riesz space-valued positive vector measures with applications
Riesz空间值正向量测度的弱阶收敛及其应用
  • 批准号:
    15540162
  • 财政年份:
    2003
  • 资助金额:
    $ 3.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Weak convergence of positive vector measures with applications to real analysis
正向量测量与实际分析应用的收敛性较弱
  • 批准号:
    13640162
  • 财政年份:
    2001
  • 资助金额:
    $ 3.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Weak convergence of vector measures with applications to real analysis
矢量测量与实际分析应用的收敛性较弱
  • 批准号:
    11640160
  • 财政年份:
    1999
  • 资助金额:
    $ 3.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Weak convergence of vector measures on topological spaces and its applications
拓扑空间矢量测度的弱收敛及其应用
  • 批准号:
    09640173
  • 财政年份:
    1997
  • 资助金额:
    $ 3.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Genetic and pharmacologic elimination of myotonia from myotonic dystrophy type 1
通过遗传和药物消除 1 型强直性肌营养不良引起的肌强直
  • 批准号:
    10750357
  • 财政年份:
    2023
  • 资助金额:
    $ 3.33万
  • 项目类别:
Muscle and physical function recovery after acute critical illness
急性危重病后肌肉和身体机能的恢复
  • 批准号:
    10584022
  • 财政年份:
    2023
  • 资助金额:
    $ 3.33万
  • 项目类别:
Presynaptic active zone alterations that underlie dynapenia at aged mouse neuromuscular junctions
老年小鼠神经肌肉接头处的突触前活性区改变导致无性缺乏
  • 批准号:
    10718403
  • 财政年份:
    2023
  • 资助金额:
    $ 3.33万
  • 项目类别:
Pharmacodynamic Biomarker of Myotonic Dystrophy
强直性肌营养不良的药效生物标志物
  • 批准号:
    10651049
  • 财政年份:
    2023
  • 资助金额:
    $ 3.33万
  • 项目类别:
Cannabidiol/Palmitoylethanolamide sublingual tablets for the treatment of Painful Diabetic Peripheral Neuropathy
大麻二酚/棕榈酰乙醇酰胺舌下片用于治疗疼痛性糖尿病周围神经病变
  • 批准号:
    10761403
  • 财政年份:
    2023
  • 资助金额:
    $ 3.33万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了