Non-additive measure theory in Riesz spaces with certain smoothenss conditions
具有一定平滑条件的Riesz空间中的非可加测度论
基本信息
- 批准号:18540166
- 负责人:
- 金额:$ 2.57万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2006
- 资助国家:日本
- 起止时间:2006 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1. The Egoroff theorem remains valid for any Riesz space-valued non-additive measure that is continuous from above and below by assuming that the Riesz space has the asymptotic Egoroff property. This property is satisfied for many concrete Riesz spaces, such as the space of all real functions on an arbitrary non-empty set and the space of all lebesgue measurable functions, and their ideals.2. The Egoroff theorem remains valid for any Riesz space-valued non-additive measure that is strung order continuous and possesses a form of continuity called "property (Sr in the literature, whenever the Riesz space has the Egoroff property. This version of the Egoroff theorem is also valid for any non-additive measure with the property of uniform autocontinuity, strong order continuity and continuity from below by assuming only the weak o-distributivity that is weaker than the Egoroffproperty.3. A smoothness condition (the multiple Egoroff property) is introduced and imposed on a Riesz space to show that every weakly null-additive Riesz space-valued fuzzy Borel measure on any metric space is regular. It is also proved that Lusin's theorem remains valid for such Riesz space-valued non-additive measures.4. The class of o-smooth countably subnormed Riesz spaces is introduced to show that the classical Riesz theorem holds for any Riesz space-valued non-additive measure that is autocontinuous from above and continuous from below.5. The Alexandroff theorem for a compact non-additive measure with values in a Riesz space is still valid for the following two cases: one is the rase that the measure is autocontinous and the Riesz space has the weak aysmptotic Egoroff property and the other is the rase that the measure is uniformly autocontinuous and the Riesz space is weakly crdistributive. A close connection between regularity and continuity of non-additive measures is also discussed.
1。通过假设Riesz空间具有渐近Egoroff特性,Egoroff定理对于任何Riesz空间值的非加性措施仍然有效。对于许多具体的Riesz空间,该属性都可以满足此属性,例如任意非空置集中所有实际功能的空间以及所有Lebesgue可测量功能的空间及其理想的空间。2。 eGoroff定理对于任何riesz空间值的非添加措施仍然有效,该措施是连续串行的,并具有一种称为“属性的连续性”形式,每当Riesz空间具有Egoroff财产时,在文献中具有EGOROFF的财产。此版本的Egoroff Theorem的本版本也与任何非原始级别的defition and cants the Egroff TheoRem均具有强度的效率,以下是较强的依据。与EgoroffProperty更弱的o。3。措施4。对于以下两种情况,Alexandroff定理具有与Riesz空间中值的紧凑型非加性测量值:一种是该度量是自发性的,Riesz Space具有弱的Aysmptotic Egoroff财产,另一个是Rase,该措施是均匀的自动连续性和Riess spaceisters crdistribs spaceisterib spacesterib spaceisters spacestrentib spacesterib spaceisters spaceSterib spaceSterib。还讨论了非加性措施的规律性和连续性之间的密切联系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Estimation method for T-year return period precipitation with consideration of long-term trend of randomness (in Japanese)
考虑随机性长期趋势的T年重现期降水量估算方法(日语)
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:N. Sogawa;T. Kusakari;T. Netsu;M. Yamasaki
- 通讯作者:M. Yamasaki
Submanifolds of statistical manifolds admitting almost complex structures
统计流形的子流形承认几乎复杂的结构
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Yue Liu;Masahito Ohta and GrozdenaTodorova;大鍛治隆司;Kazuhiko Takano
- 通讯作者:Kazuhiko Takano
The validity of the Egoroff theorem in Riesz space-valued non-additive measure theory
Riesz空间值非可加测度论中Egoroff定理的有效性
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:J. Kawabe;K. Takiguchi
- 通讯作者:K. Takiguchi
The Egoroff property and the Egoroff theorem in Riesz space-valued non-additive measure theory
- DOI:10.1016/j.fss.2006.09.019
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:J. Kawabe
- 通讯作者:J. Kawabe
The Lusin theorem and the multiple Egoroff property (in Japanese)
Lusin 定理和多重 Egoroff 性质(日语)
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:J. Kawabe;Y. Hasebe
- 通讯作者:Y. Hasebe
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KAWABE Jun其他文献
KAWABE Jun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KAWABE Jun', 18)}}的其他基金
Nonlinear integrals in nonadditive measure theory and their study based on a perturbative method
非加性测度论中的非线性积分及其基于微扰法的研究
- 批准号:
26400130 - 财政年份:2014
- 资助金额:
$ 2.57万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topological Structure of Weak Convergence of Nonadditive Measures
非相加测度弱收敛的拓扑结构
- 批准号:
23540192 - 财政年份:2011
- 资助金额:
$ 2.57万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New smoothness conditions on Riesz spaces with applications to nonadditive measures and Choquet integrals
Riesz 空间上的新平滑条件及其在非加性测度和 Choquet 积分中的应用
- 批准号:
20540163 - 财政年份:2008
- 资助金额:
$ 2.57万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Weak order convergence of Riesz space-valued positive vector measures with applications
Riesz空间值正向量测度的弱阶收敛及其应用
- 批准号:
15540162 - 财政年份:2003
- 资助金额:
$ 2.57万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Weak convergence of positive vector measures with applications to real analysis
正向量测量与实际分析应用的收敛性较弱
- 批准号:
13640162 - 财政年份:2001
- 资助金额:
$ 2.57万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Weak convergence of vector measures with applications to real analysis
矢量测量与实际分析应用的收敛性较弱
- 批准号:
11640160 - 财政年份:1999
- 资助金额:
$ 2.57万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Weak convergence of vector measures on topological spaces and its applications
拓扑空间矢量测度的弱收敛及其应用
- 批准号:
09640173 - 财政年份:1997
- 资助金额:
$ 2.57万 - 项目类别:
Grant-in-Aid for Scientific Research (C)