Weak convergence of positive vector measures with applications to real analysis
正向量测量与实际分析应用的收敛性较弱
基本信息
- 批准号:13640162
- 负责人:
- 金额:$ 2.05万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2002
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We have studied weak convergence of positive vector measures with values in Banach spaces and nuclear spaces, and have applied to several interesting problems in real analysis, probability theory, control theory, differential geometry and so on. Some of our important results are as follows:1. A sequential compactness criterion is given for the weak topology of vector measures with values in certain nuclear spaces.2. It is shown that the injective tensor product of positive vector measures in certain Banach lattices is jointly continuous with respect to the weak convergence of vector measures. Our approach to this problem is based on Bartle's bilinear integration theory.3. Prokhorov-LeCam' s compactness criteria and Varadarajan' s metrizability criterion are given for vector measures with values in Frechet spaces, semi-reflexive spaces, and semi-Montel spaces.4. The existence and uniqueness of the Borel injective tensor product of two Banach space-valued vector measures and the validity … More of a Fubini-type theorem are shown. Thanks to these results, the convolution of vector measures on a topological semigroup is defined as the measure induced by their Borel injective tensor product and the semigroup operation. The joint weak continuity of Borel injective tensor products or convolutions of vector measures is also proved.5. Compactness and sequential compactness criteria are given for a set of vector measures on a complete separable metric space with values in a certain semi-Montel space.6. It is shown that the Portmanteau Theorem remains valid for order σ-additive, positive vector measures with values in a Dedekind σ-complete Riesz space.7. A general theorem for the method of absolute Norulund summability is given.8. Some new characterizations of compact sets are given.9. The uniqueness of the solutions in H^∞ control problems is proved for general plants. Another proof, which does not depend on the complexity of the form of the algebraic Riccati equations, is also given.10. It is proved that there is a qubic-free sequence of letters.11. It is shown that a conformal Killing vector field is parallel on a compact almost Kahlerian manifold. Less
我们已经研究了阳性矢量测量与Banach空间和核空间中的值的弱收敛性,并应用于实际分析,概率理论,控制理论,差异几何形状等的几个有趣问题。我们的一些重要结果如下:1。对于在某些核空间中的值的较弱的矢量测量拓扑,给出了顺序的紧凑标准。2。结果表明,与矢量测量的弱收敛性相对于某些BANACH晶格中阳性矢量测量的启动量量是共同的。我们解决这个问题的方法是基于Bartle的双线性整合理论3。 Prokhorov-Lecam的紧凑标准和Varadarajan的度量标准用于矢量测量值,其值是在Frechet空间,半反射空间和半蒙难空间中的值。4。显示了两个Banach空间值矢量测量和有效性的borel Injementive张量产物的存在和独特性……更多的fubini-Type定理。感谢这些结果,拓扑半群上的向量测量值定义为由其Borel注射量张量产品和半群操作引起的测量。还证明了Borel注射量张量产物或向量测量的卷积的关节弱连续性。5。在完整的单独的度量空间上,给出了一组矢量测量值的紧凑度和顺序紧凑标准,该矢量测量值在某个半蒙太德空间中具有值。6。结果表明,portmanteau定理对于σ加addive,正载向量测量的阶数仍然有效。给出了绝对Norulund总结方法的一般理论。8。给出了一些紧凑型集的新字符。9。 H^∞控制问题的独特性证明了通用植物的唯一性。还给出了另一个证据,不取决于代数riccati方程的复杂性。10。事实证明,有一个无Qubic的字母序列。11。结果表明,在紧凑的几乎是卡勒利亚的歧管上,保形杀死矢量场是平行的。较少的
项目成果
期刊论文数量(44)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
J.Kawabe: "Sequential compactness for the weak topology of vector measures in certain nuclear spaces"Georgian Math.J.. 8. 283-295 (2001)
J.Kawabe:“某些核空间中矢量测度弱拓扑的顺序紧性”Georgian Math.J.. 8. 283-295 (2001)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
J.Kawabe: "Joint continuity of injective tensor products of vector measures in Banach lattices"J.Aust.Math.Soc.. 73. 1-15 (2002)
J.Kawabe:“Banach 格子中矢量测度的单射张量积的联合连续性”J.Aust.Math.Soc.. 73. 1-15 (2002)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
J.Kawabe: "Strassen's theorem for positive vector measures"京都大学数理解析研究所講究録. 1298. 59-64 (2002)
J.Kawabe:“正向量测度的斯特拉森定理”京都大学数学科学研究所 Kokyuroku。1298. 59-64 (2002)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
J.Kawabe: "Compactness criteria for the weak convergence of vector measures in locally convex spaces"Publ.Math.Debrecen. 60. 115-130 (2002)
J.Kawabe:“局部凸空间中向量测量弱收敛的紧致性准则”Publ.Math.Debrecen。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
J. Kawabe: "Weak convergence of positive tensor product measures with values in Banach lattices (in Japanese)"Surikaisekikenkyusho Kokyuroku. 1186. 1-14 (2001)
J. Kawabe:“正张量积测量与 Banach 格中的值的弱收敛(日语)”Surikaisekikenkyusho Kokyuroku。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KAWABE Jun其他文献
KAWABE Jun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KAWABE Jun', 18)}}的其他基金
Nonlinear integrals in nonadditive measure theory and their study based on a perturbative method
非加性测度论中的非线性积分及其基于微扰法的研究
- 批准号:
26400130 - 财政年份:2014
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topological Structure of Weak Convergence of Nonadditive Measures
非相加测度弱收敛的拓扑结构
- 批准号:
23540192 - 财政年份:2011
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New smoothness conditions on Riesz spaces with applications to nonadditive measures and Choquet integrals
Riesz 空间上的新平滑条件及其在非加性测度和 Choquet 积分中的应用
- 批准号:
20540163 - 财政年份:2008
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-additive measure theory in Riesz spaces with certain smoothenss conditions
具有一定平滑条件的Riesz空间中的非可加测度论
- 批准号:
18540166 - 财政年份:2006
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Weak order convergence of Riesz space-valued positive vector measures with applications
Riesz空间值正向量测度的弱阶收敛及其应用
- 批准号:
15540162 - 财政年份:2003
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Weak convergence of vector measures with applications to real analysis
矢量测量与实际分析应用的收敛性较弱
- 批准号:
11640160 - 财政年份:1999
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Weak convergence of vector measures on topological spaces and its applications
拓扑空间矢量测度的弱收敛及其应用
- 批准号:
09640173 - 财政年份:1997
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Numerical Study of Quantum Spin-Nematic Order in Frustrated Ferromagnets and its Relation to Quantum Spin Liquids
受抑铁磁体中量子自旋向列序的数值研究及其与量子自旋液体的关系
- 批准号:
22K14008 - 财政年份:2022
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The tensor product of Beck modules
Beck模块的张量积
- 批准号:
563139-2021 - 财政年份:2021
- 资助金额:
$ 2.05万 - 项目类别:
University Undergraduate Student Research Awards
Tensor-product algorithms for quantum control problems
量子控制问题的张量积算法
- 批准号:
EP/P033954/1 - 财政年份:2018
- 资助金额:
$ 2.05万 - 项目类别:
Research Grant
Tensor product numerical methods for high-dimensional problems in probability and quantum calculations
概率和量子计算中高维问题的张量积数值方法
- 批准号:
EP/M019004/1 - 财政年份:2016
- 资助金额:
$ 2.05万 - 项目类别:
Fellowship