Arithmetic aspects of Calabi-Yau surfaces and the hypergeometric system
卡拉比-丘曲面和超几何系统的算术方面
基本信息
- 批准号:23540061
- 负责人:
- 金额:$ 3.24万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2011
- 资助国家:日本
- 起止时间:2011 至 2013
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this project we aimed to find a new aspect of the period map for the K3 surfaces based on the hypergeometric differential equations. We expected arithmetic applications of our approach also. For it, it is basic to obtain explicit representations of the modular functions those arise as the inverse of the period map. There are various foregoing studies for the moduli of abelian surfaces. But there was no exact result to describe the modular maps based on the geometric back ground. We found a good description of theparameter space for it by considering a family of elliptic K3 surfaces those are Hodge equivalent to the family of abelian surfaces. By this idea we succeeded to solve the above problem. The main result will be published as"Modular maps for the family of abelian surfaces via K3 surfaces", Math. Nachrichten (2014)(in printing, joint work with A. Nagano).
在这个项目中,我们的目标是基于超几何微分方程找到 K3 表面周期图的一个新方面。我们也期望我们的方法能够在算术上得到应用。对于它来说,获得作为周期图的逆函数出现的模函数的显式表示是基础。对于阿贝尔曲面的模量,存在各种前述研究。但目前还没有准确的结果来描述基于几何背景的模图。通过考虑椭圆 K3 曲面族(这些曲面与阿贝尔曲面族霍奇等价),我们找到了对其参数空间的良好描述。通过这个思路我们成功的解决了上面的问题。主要结果将作为“通过 K3 曲面的阿贝尔曲面族的模块化映射”发表,Math. Nachrichten (2014)(印刷中,与 A. Nagano 合作)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Explicit modular map for abelian surfaces via K3 surfaces
通过 K3 曲面的阿贝尔曲面的显式模块化映射
- DOI:
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:Hajime Sato and Keizo Yamaguchi;Hironori Shiga
- 通讯作者:Hironori Shiga
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHIGA Hironori其他文献
SHIGA Hironori的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHIGA Hironori', 18)}}的其他基金
Arithmetic research of hypergeometric differential equation and its Schwarz map
超几何微分方程及其Schwarz图的算术研究
- 批准号:
17540011 - 财政年份:2005
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on the hypergeometric diffeential equations considering the application for the coding theory
考虑编码理论应用的超几何微分方程研究
- 批准号:
14540153 - 财政年份:2002
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on the K3 modular function and its arithmetic aspects
K3模函数及其算术问题的研究
- 批准号:
12640010 - 财政年份:2000
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
K3 modular functions and hypergeometric period differential equations
K3模函数和超几何周期微分方程
- 批准号:
19K03396 - 财政年份:2019
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of hypergeometric functions on the Grassmannian, q-hypergeometric functions and nonlinear special functions
格拉斯曼超几何函数、q-超几何函数和非线性特殊函数的研究
- 批准号:
15K04903 - 财政年份:2015
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on K3 modular forms derived from hypergeometric systems
超几何系统K3模形式研究
- 批准号:
15K04807 - 财政年份:2015
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on integrable systems around the Painleve systems
围绕 Painleve 系统的可积系统研究
- 批准号:
20740089 - 财政年份:2008
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Arithmetic relations between modular forms and hypergeometric functions in several variables
多变量模形式与超几何函数之间的算术关系
- 批准号:
20540007 - 财政年份:2008
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)