Optimization via Quantum Information Combinatorics and Its Applications to Extend Fundamentals of Quantum Information Science and Technology
量子信息组合优化及其在扩展量子信息科学与技术基础方面的应用
基本信息
- 批准号:17300001
- 负责人:
- 金额:$ 10.53万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2005
- 资助国家:日本
- 起止时间:2005 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project first investigates quantum nonlocality and maximum quantum violation of generalized Bell inequalities from the viewpoint of combinatorial optimization, including semidefinite programming. Also, quantum computational geometry is explored in the space of quantum states, which leads to a new algorithm to compute the quantum channel capacity. Some related optimization problems are also studied in view of algebraic-geometric structures.Generalized Bell inequalities reveal quantum nonlocality from various standpoints. Those Bell inequalities are shown to correspond to facet inequalities of the cut polytope of a certain tripartite graph. We derive a unified method of generating such Bell inequalities by applying triangular eliminations to facets of the cut polytope of a complete graph. These Bell inequalities are compared theoretically and numerically with respect to its strength to reveal quantum nonlocality. The problem of finding the maximum violation of a generalized Bell inequality is first investigated from the point of view of optimization, and semidefinite programming is applied to derive bounds. Also, new interesting relation is shown between this problem and the 2-prover 1-round interactive proof in computational complexity.Quantum computational geometry is demonstrated to have nice structure as in the classical information-theoretic case. The Voronoi diagram with respect to quantum divergence in the space of quantum information geometry is characterized via the von Neumann entropy and its Legendre transformation. Voronoi diagrams for pure quantum states are also investigated, and relations among these diagrams are shown. These structures are applied in computing the quantum channel capacity by applying the minimum enclosing sphere algorithm for quantum divergence. This algorithm can produce an almost optimum solution with some guaranteed bound.
该研究项目首先从组合优化(包括半定规划)的角度研究量子非定域性和广义贝尔不等式的最大量子违反。此外,在量子态空间中探索了量子计算几何,从而产生了一种计算量子通道容量的新算法。一些相关的优化问题也从代数几何结构的角度进行了研究。广义贝尔不等式从不同的角度揭示了量子非定域性。这些贝尔不等式与某个三方图的切割多胞形的面不等式相对应。我们通过对完整图的切割多面体的面应用三角消除来导出生成此类贝尔不等式的统一方法。从理论上和数值上比较这些贝尔不等式揭示量子非定域性的强度。首先从优化的角度研究了寻找广义贝尔不等式的最大违反的问题,并应用半定规划来导出边界。此外,在计算复杂性方面,该问题与 2-prover 1-round 交互证明之间显示了新的有趣关系。量子计算几何被证明具有与经典信息论情况一样良好的结构。关于量子信息几何空间中的量子发散的 Voronoi 图通过冯诺依曼熵及其勒让德变换来表征。还研究了纯量子态的 Voronoi 图,并显示了这些图之间的关系。这些结构通过应用量子发散的最小包围球算法来计算量子信道容量。该算法可以产生具有一定保证界限的几乎最优解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Realizations of Non-uniform Oriented Matroids Using Generalized Mutation Graphs.
使用广义变异图实现非均匀定向拟阵。
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Hiroki Nakayama; Sonoko Moriyama;Komei Fukuda
- 通讯作者:Komei Fukuda
Quantum versus Deterministic Counter Automata
量子与确定性计数器自动机
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Tomohiro Yamasaki; Hirotada Kobayashi; Hiroshi Imai
- 通讯作者:Hiroshi Imai
Formulation of the Maximum Quantum Violation of Bell Inequalities by 2-prover 1-round Interactive Proof.
通过 2 个证明者 1 轮交互证明制定贝尔不等式的最大量子破坏。
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Toshiaki Takahashi; Sonoko Moriyama; Hiroshi lmai;David Avis
- 通讯作者:David Avis
Coincidence of Voronoi Diagrams in a Quantum State Space.
量子态空间中沃罗诺伊图的重合。
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Kimikazu Kato; Mayumi Oto; Hiroshi Imai;Keiko Imai
- 通讯作者:Keiko Imai
SEB向き付けにおけるHolt-Klee条件.
SEB 方向的 Holt-Klee 条件。
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:西鳥羽二郎; 森山園子; 中山裕貴; 今井浩
- 通讯作者:今井浩
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
IMAI Hiroshi其他文献
IMAI Hiroshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('IMAI Hiroshi', 18)}}的其他基金
Interaction between two motor domains of cytoplasmic dynein stepping along microtubules revealed by cryo-electron microscopy.
冷冻电子显微镜揭示了沿着微管步进的细胞质动力蛋白的两个运动域之间的相互作用。
- 批准号:
16K07327 - 财政年份:2016
- 资助金额:
$ 10.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Unified Approach for Nanotechnology CAD/Computation by Algorithmic Analysis of Periodic Crystal Structures
通过周期性晶体结构的算法分析实现纳米技术 CAD/计算的统一方法
- 批准号:
22650002 - 财政年份:2010
- 资助金额:
$ 10.53万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Long term culture and regulation of differentiation of germ cells from the testis in domestic species
家养物种睾丸生殖细胞的长期培养和分化调节
- 批准号:
22380150 - 财政年份:2010
- 资助金额:
$ 10.53万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Quantum-Classical Correlation Games and New Analyses of Discrete-Continuous Optimization and Computational Complexity
量子经典相关博弈以及离散连续优化和计算复杂性的新分析
- 批准号:
20300002 - 财政年份:2008
- 资助金额:
$ 10.53万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Surveys and high resolution imaging of jets from evolved stars
演化恒星喷流的勘测和高分辨率成像
- 批准号:
20540234 - 财政年份:2008
- 资助金额:
$ 10.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of biological function of tenascin-C in progression of heart failure and its clinical application
Tenascin-C在心力衰竭进展中的生物学功能分析及其临床应用
- 批准号:
10670644 - 财政年份:1998
- 资助金额:
$ 10.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
NewDevelopments of Discrete-System Algorithmics Based on Complexes
基于复形的离散系统算法的新进展
- 批准号:
10205204 - 财政年份:1998
- 资助金额:
$ 10.53万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas (B)
Developments of Advanced Optimization Systems Unitying Discrete and Continuous Approaches Associate
结合离散和连续方法的高级优化系统的开发
- 批准号:
07555615 - 财政年份:1995
- 资助金额:
$ 10.53万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Joint Research on Algorithms in Computational Geometry
计算几何算法联合研究
- 批准号:
06044058 - 财政年份:1994
- 资助金额:
$ 10.53万 - 项目类别:
Grant-in-Aid for international Scientific Research
Algorithms on continuous models for solving discrete problems and their parallelization.
用于解决离散问题的连续模型算法及其并行化。
- 批准号:
03680026 - 财政年份:1991
- 资助金额:
$ 10.53万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似国自然基金
量子网络理论的算子空间方法研究
- 批准号:11901526
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
空间尺度量子力学基本问题检验研究
- 批准号:U1738201
- 批准年份:2017
- 资助金额:700.0 万元
- 项目类别:联合基金项目
低维量子系统中多方量子非定域性与量子相变研究
- 批准号:11675124
- 批准年份:2016
- 资助金额:56.0 万元
- 项目类别:面上项目
非单模近似下弯曲时空中的量子关联及其相关问题研究
- 批准号:11605028
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
量子关联与 Tsirelson 问题
- 批准号:11571307
- 批准年份:2015
- 资助金额:50.0 万元
- 项目类别:面上项目
相似海外基金
Bell inequality violation detection with flavor entanglement of B meson pairs in LHC-ATLAS Run-3
LHC-ATLAS Run-3 中 B 介子对风味纠缠的贝尔不等式违规检测
- 批准号:
22KJ1827 - 财政年份:2023
- 资助金额:
$ 10.53万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Remote Entanglement of Trapped Ions and Loophole-Free Bell Inequality
俘获离子的远程纠缠和无漏洞贝尔不等式
- 批准号:
1505326 - 财政年份:2015
- 资助金额:
$ 10.53万 - 项目类别:
Continuing Grant
INSPIRE: Testing Bell's Inequality with Astrophysical Observations
INSPIRE:用天体物理观测检验贝尔不等式
- 批准号:
1541160 - 财政年份:2015
- 资助金额:
$ 10.53万 - 项目类别:
Standard Grant
Remote Entanglement of Trapped Ions and Loophole-Free Bell Inequality
俘获离子的远程纠缠和无漏洞贝尔不等式
- 批准号:
1067054 - 财政年份:2011
- 资助金额:
$ 10.53万 - 项目类别:
Continuing Grant
Remote Entanglement of Trapped Ions and Loophole-Free Bell Inequality Tests
捕获离子的远程纠缠和无漏洞贝尔不等式测试
- 批准号:
0758025 - 财政年份:2008
- 资助金额:
$ 10.53万 - 项目类别:
Continuing Grant