NewDevelopments of Discrete-System Algorithmics Based on Complexes

基于复形的离散系统算法的新进展

基本信息

  • 批准号:
    10205204
  • 负责人:
  • 金额:
    $ 6.98万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas (B)
  • 财政年份:
    1998
  • 资助国家:
    日本
  • 起止时间:
    1998 至 2000
  • 项目状态:
    已结题

项目摘要

Simplicial complexes arise in various discrete systems, such as graphs, networks, matroids, convex polytopes, triangulations, etc. There have been known discrete invariant polynomials featuring a given simplicial complex, such as network reliability, chromatic polynomial, invariants of statistical physics and knots/links. We have developed efficient algorithms to compute these invariant polynomials based on the Binary Decision Diagram (BDD), and have shown that moderate-size problems can be solved in practice. Since most of these computation problems are known to be #P-hard, this is a quite remarkable result. We have also presented algebraic approaches to these problems, based on the Groebner bases in computational algebra and also triangulations in computational geometry. This unified approach was analyzed from the viewpoint of combinatorial complexity. We have further investigated new search methods for combinatorial search, geometric and probabilistic proximity structures, full text database search algorithms, etc. Finally, quantum computing and quantum information theory are treated as a natural extension of probabilistic computation and classical information theory, and their discrete structures have been revealed. In so doing, quantum computation simulators have been implemented and used. Some submodularity property of the quantum entropy is also shown.
单纯复形出现在各种离散系统中,例如图、网络、拟阵、凸多面体、三角剖分等。已知具有给定单纯复形特征的离散不变多项式,例如网络可靠性、色多项式、统计物理不变量和结/链接。我们开发了基于二元决策图 (BDD) 的有效算法来计算这些不变多项式,并表明在实践中可以解决中等规模的问题。由于大多数计算问题都被认为是#P-hard,所以这是一个非常了不起的结果。我们还基于计算代数中的 Groebner 基础以及计算几何中的三角剖分提出了解决这些问题的代数方法。从组合复杂性的角度分析了这种统一方法。我们进一步研究了组合搜索、几何和概率邻近结构、全文数据库搜索算法等新的搜索方法。最后,量子计算和量子信息论被视为概率计算和经典信息论的自然延伸,它们的离散结构已经被揭示。在此过程中,量子计算模拟器已经被实现和使用。还显示了量子熵的一些子模性质。

项目成果

期刊论文数量(32)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

IMAI Hiroshi其他文献

IMAI Hiroshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('IMAI Hiroshi', 18)}}的其他基金

Interaction between two motor domains of cytoplasmic dynein stepping along microtubules revealed by cryo-electron microscopy.
冷冻电子显微镜揭示了沿着微管步进的细胞质动力蛋白的两个运动域之间的相互作用。
  • 批准号:
    16K07327
  • 财政年份:
    2016
  • 资助金额:
    $ 6.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Unified Approach for Nanotechnology CAD/Computation by Algorithmic Analysis of Periodic Crystal Structures
通过周期性晶体结构的算法分析实现纳米技术 CAD/计算的统一方法
  • 批准号:
    22650002
  • 财政年份:
    2010
  • 资助金额:
    $ 6.98万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Long term culture and regulation of differentiation of germ cells from the testis in domestic species
家养物种睾丸生殖细胞的长期培养和分化调节
  • 批准号:
    22380150
  • 财政年份:
    2010
  • 资助金额:
    $ 6.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Quantum-Classical Correlation Games and New Analyses of Discrete-Continuous Optimization and Computational Complexity
量子经典相关博弈以及离散连续优化和计算复杂性的新分析
  • 批准号:
    20300002
  • 财政年份:
    2008
  • 资助金额:
    $ 6.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Surveys and high resolution imaging of jets from evolved stars
演化恒星喷流的勘测和高分辨率成像
  • 批准号:
    20540234
  • 财政年份:
    2008
  • 资助金额:
    $ 6.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Optimization via Quantum Information Combinatorics and Its Applications to Extend Fundamentals of Quantum Information Science and Technology
量子信息组合优化及其在扩展量子信息科学与技术基础方面的应用
  • 批准号:
    17300001
  • 财政年份:
    2005
  • 资助金额:
    $ 6.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Analysis of biological function of tenascin-C in progression of heart failure and its clinical application
Tenascin-C在心力衰竭进展中的生物学功能分析及其临床应用
  • 批准号:
    10670644
  • 财政年份:
    1998
  • 资助金额:
    $ 6.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developments of Advanced Optimization Systems Unitying Discrete and Continuous Approaches Associate
结合离散和连续方法的高级优化系统的开发
  • 批准号:
    07555615
  • 财政年份:
    1995
  • 资助金额:
    $ 6.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Joint Research on Algorithms in Computational Geometry
计算几何算法联合研究
  • 批准号:
    06044058
  • 财政年份:
    1994
  • 资助金额:
    $ 6.98万
  • 项目类别:
    Grant-in-Aid for international Scientific Research
Algorithms on continuous models for solving discrete problems and their parallelization.
用于解决离散问题的连续模型算法及其并行化。
  • 批准号:
    03680026
  • 财政年份:
    1991
  • 资助金额:
    $ 6.98万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似国自然基金

两类偏微分方程大规模离散系统的特征驱动的多水平算法及其新型解法器研究
  • 批准号:
    12371373
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
离散系统变分方法的推广及其应用
  • 批准号:
    12371184
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
采样区间随机变化下基于离散系统方法的网络化系统控制
  • 批准号:
    62003204
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
电磁场问题混合有限元离散系统的快速算法研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
线性离散系统的非线性迭代学习最优控制及其时域鲁棒性研究
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    61 万元
  • 项目类别:
    面上项目

相似海外基金

Bayesian Mortality Estimation from Disparate Data Sources
来自不同数据源的贝叶斯死亡率估计
  • 批准号:
    10717177
  • 财政年份:
    2023
  • 资助金额:
    $ 6.98万
  • 项目类别:
Theory and Modeling of Functional Conformational Changes of RNA Polymerases
RNA聚合酶功能构象变化的理论和建模
  • 批准号:
    10656962
  • 财政年份:
    2023
  • 资助金额:
    $ 6.98万
  • 项目类别:
Exact master equation for a discrete quantum system and the relaxation process
离散量子系统的精确主方程和弛豫过程
  • 批准号:
    23K03268
  • 财政年份:
    2023
  • 资助金额:
    $ 6.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Peripheral Artery Disease: Long-term Survival & Outcomes Study (PEARLS)
外周动脉疾病:长期生存
  • 批准号:
    10734991
  • 财政年份:
    2023
  • 资助金额:
    $ 6.98万
  • 项目类别:
Role of the kappa opioid receptor system in learning and substance use disorders
kappa阿片受体系统在学习和物质使用障碍中的作用
  • 批准号:
    10750800
  • 财政年份:
    2023
  • 资助金额:
    $ 6.98万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了