Algorithms on continuous models for solving discrete problems and their parallelization.

用于解决离散问题的连续模型算法及其并行化。

基本信息

  • 批准号:
    03680026
  • 负责人:
  • 金额:
    $ 1.28万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
  • 财政年份:
    1991
  • 资助国家:
    日本
  • 起止时间:
    1991 至 1992
  • 项目状态:
    已结题

项目摘要

The aim of this research is to consider transformations between discrete problems and continuous/nonlinear worlds, and to develop efficient algorithms for discrete problems using the good properties of continuous models. By considering good transformations to continuous models, combinatorial explosion encountered in the original discrete settings might be sometimes overcome or at least weakened in some cases.In this research, we mainly focus on the interior-point method for linear programming and its application to special or generalized cases such as network programming and integer programming. Concerning linear programming, in mid 1980's, variants of the old interior-point method was considered as a possible alternative, especially for large-scale problems, to the state-of-the-art simplex method. Through this research project, we have clarified the time complexity of the multiplicative penalty function method for linear programming which was proposed by Iri and Imai. Furthermore, applying the interior-point method to network flow problems has been proposed, and its use in designing parallel algorithms has been demonstrated.Also, by considering the geometric properties of linear programming in detail, randomized algorithms for linear programming and its related problems have been investigated. Especially, the rounding stage arising in the application of the interior-point method for integer programming has been studied from deterministic and probabilistic viewpoints. Parallelization of several rounding procedures has been also investigated.An efficient greedy-type algorithm has been developed for the one-dimensional matching problems for point sets, partially using the technique of computational geometry.
本研究的目的是考虑离散问题和连续/非线性世界之间的转换,并利用连续模型的良好特性为离散问题开发有效的算法。通过考虑对连续模型的良好变换,在原始离散设置中遇到的组合爆炸有时可能会被克服或至少在某些情况下被削弱。在本研究中,我们主要关注线性规划的内点方法及其在特殊或特殊情况下的应用。网络编程和整数编程等一般情况。关于线性规划,在 20 世纪 80 年代中期,旧的内点方法的变体被认为是最先进的单纯形方法的一种可能的替代方案,特别是对于大规模问题。通过这个研究项目,我们阐明了Iri和Imai提出的线性规划乘法惩罚函数方法的时间复杂度。此外,还提出了将内点方法应用于网络流问题,并论证了其在设计并行算法中的用途。此外,通过详细考虑线性规划的几何性质,线性规划及其相关问题的随机算法被调查。特别是,从确定性和概率性的角度研究了整数规划内点法应用中出现的舍入阶段。还研究了几种舍入过程的并行化。针对点集的一维匹配问题,部分使用了计算几何技术,开发了一种有效的贪婪型算法。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
H.Imai T.Oomae: "Roundinga Real Vector to an Integral Vector in Integer Programming and Its Porallelization." Proceedings of the JSPS Symposium on Parallel Computing.
H.Imai T.Oomae:“整数规划及其并行化中的实数向量到积分向量的舍入”。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T. Akutsu, Y. Aoki, S. Hasegawa, H. Imai and T. Tokuyama: "The Sum of Smaller Endpoint Degree over Edges of Graphs and Its Applications to Geometric Problems." Proceedings of the 3rd Canadian Conference on Computational Geometry, Vancouver. 145-148 (1991)
T. Akutsu、Y. Aoki、S. Hasekawa、H. Imai 和 T. Tokuyama:“图边上较小端点度的总和及其在几何问题中的应用”。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.IMAI and T.OOMAE: "Rounding a Real Vector to an Integral Vector in Integer Programming and Its Parallelization." Proceedings of the JSPS Symposium on Parallel Computing.
H.IMAI 和 T.OOMAE:“在整数规划及其并行化中将实数向量舍入为整数向量”。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

IMAI Hiroshi其他文献

IMAI Hiroshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('IMAI Hiroshi', 18)}}的其他基金

Interaction between two motor domains of cytoplasmic dynein stepping along microtubules revealed by cryo-electron microscopy.
冷冻电子显微镜揭示了沿着微管步进的细胞质动力蛋白的两个运动域之间的相互作用。
  • 批准号:
    16K07327
  • 财政年份:
    2016
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Unified Approach for Nanotechnology CAD/Computation by Algorithmic Analysis of Periodic Crystal Structures
通过周期性晶体结构的算法分析实现纳米技术 CAD/计算的统一方法
  • 批准号:
    22650002
  • 财政年份:
    2010
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Long term culture and regulation of differentiation of germ cells from the testis in domestic species
家养物种睾丸生殖细胞的长期培养和分化调节
  • 批准号:
    22380150
  • 财政年份:
    2010
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Quantum-Classical Correlation Games and New Analyses of Discrete-Continuous Optimization and Computational Complexity
量子经典相关博弈以及离散连续优化和计算复杂性的新分析
  • 批准号:
    20300002
  • 财政年份:
    2008
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Surveys and high resolution imaging of jets from evolved stars
演化恒星喷流的勘测和高分辨率成像
  • 批准号:
    20540234
  • 财政年份:
    2008
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Optimization via Quantum Information Combinatorics and Its Applications to Extend Fundamentals of Quantum Information Science and Technology
量子信息组合优化及其在扩展量子信息科学与技术基础方面的应用
  • 批准号:
    17300001
  • 财政年份:
    2005
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Analysis of biological function of tenascin-C in progression of heart failure and its clinical application
Tenascin-C在心力衰竭进展中的生物学功能分析及其临床应用
  • 批准号:
    10670644
  • 财政年份:
    1998
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
NewDevelopments of Discrete-System Algorithmics Based on Complexes
基于复形的离散系统算法的新进展
  • 批准号:
    10205204
  • 财政年份:
    1998
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas (B)
Developments of Advanced Optimization Systems Unitying Discrete and Continuous Approaches Associate
结合离散和连续方法的高级优化系统的开发
  • 批准号:
    07555615
  • 财政年份:
    1995
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Joint Research on Algorithms in Computational Geometry
计算几何算法联合研究
  • 批准号:
    06044058
  • 财政年份:
    1994
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for international Scientific Research

相似国自然基金

基于线性规划法和通用发生函数法的含潜在脆性破坏构件的钢桁架结构可靠度分析方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
稀疏优化与机器学习高级研讨班
  • 批准号:
    12226413
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
量子稳定子码的线性规划译码研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
锥线性规划问题的新型算法研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
深度学习中的低秩矩阵优化的模型及算法研究
  • 批准号:
    12126370
  • 批准年份:
    2021
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

CAREER: Theoretical and Computational Advances for Enabling Robust Numerical Guarantees in Linear and Mixed Integer Programming Solvers
职业:在线性和混合整数规划求解器中实现鲁棒数值保证的理论和计算进展
  • 批准号:
    2340527
  • 财政年份:
    2024
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Continuing Grant
The Helicase and Nucleic Acid-based Machines Conference: Structure, Mechanism, Regulation and Roles in Human Diseases
解旋酶和核酸机器会议:结构、机制、调节和在人类疾病中的作用
  • 批准号:
    10753877
  • 财政年份:
    2023
  • 资助金额:
    $ 1.28万
  • 项目类别:
Transcriptional basis of stereotyped neural architectures
刻板神经结构的转录基础
  • 批准号:
    10672300
  • 财政年份:
    2022
  • 资助金额:
    $ 1.28万
  • 项目类别:
Transcriptional basis of stereotyped neural architectures
刻板神经结构的转录基础
  • 批准号:
    10525865
  • 财政年份:
    2022
  • 资助金额:
    $ 1.28万
  • 项目类别:
Culturally Tailored Nutrition Therapy To Improve Dietary Adherence of Type 2 Diabetes Patients in Benin, Africa
根据文化量身定制的营养疗法可提高非洲贝宁 2 型糖尿病患者的饮食依从性
  • 批准号:
    10706336
  • 财政年份:
    2022
  • 资助金额:
    $ 1.28万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了