Understanding of multidimensional quantum phenomenon in molecules with many-body quantum wavepacket theory

用多体量子波包理论理解分子中的多维量子现象

基本信息

  • 批准号:
    22740272
  • 负责人:
  • 金额:
    $ 2.83万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
  • 财政年份:
    2010
  • 资助国家:
    日本
  • 起止时间:
    2010 至 2012
  • 项目状态:
    已结题

项目摘要

We have established a wavepacket dynamics method based on the Action Decomposed Function (ADF). This method is not accompanied with the integration of the stability matrix, which prevents large scale calculation because of the required numerical efforts to implement. Considering the geometric structure around the classical trajectory, it was found that quantum effect is appropriately incorporated to go beyond the semiclassical singularity. Applying the method to several systems, that include the one with 100 degrees of freedom, we have confirmed the feasibility of our theoretical framework and established the practical basis for revealing multidimensional molecular quantum dynamics in molecules.
我们已经基于动作分解函数(ADF)建立了一个波袋动力学方法。该方法不伴随着稳定矩阵的集成,该矩阵可以防止大规模计算,因为要实施的数值努力。考虑到经典轨迹周围的几何结构,发现量子效应适当地纳入了超越半经典奇异性。将该方法应用于几个系统,其中包括具有100个自由度的系统,我们已经确认了我们的理论框架的可行性,并确定了揭示分子中多维分子量子动力学的实际基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Towards many dimensional wavepacket theory in chemical dynamics
化学动力学中的多维波包理论
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Minoru Ikehara;Yoshifumi Nogi;Yusuke Suganuma;Robert Dunbar;Boo-Keun Khim;Tim Naish;et al.;Satoshi Takahashi & Kazuo Takatsuka
  • 通讯作者:
    Satoshi Takahashi & Kazuo Takatsuka
量子力学の非線形ダイナミクス
量子力学的非线性动力学
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    高塚和夫;高橋聡
  • 通讯作者:
    高橋聡
Semiclassical studies in chemical reaction dynamics
化学反应动力学的半经典研究
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B.K. Khim;M. Ikehara;Y. Nogi;KH10-07 Shipboard Scientists;Satoshi Takahashi & Kazuo Takatsuka
  • 通讯作者:
    Satoshi Takahashi & Kazuo Takatsuka
To higher semiclassical theory for dynamics of wavepackets
波包动力学的高等半经典理论
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nguyen Thanh Phuc;川口由紀;上田正仁;Walter Meissl;高橋聡
  • 通讯作者:
    高橋聡
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TAKAHASHI Satoshi其他文献

Surface Treatment Regarding Coloring of Stainless Steel Using YVO4 Laser (Consideration of Environmental Factor, Sensitive Color and Life Regarding Coloring)
使用YVO4激光进行不锈钢着色的表面处理(考虑着色的环境因素、敏感颜色和寿命)

TAKAHASHI Satoshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TAKAHASHI Satoshi', 18)}}的其他基金

Elucidation of the mechanism of stereopsis insufficiency and mental and physical fatigue caused by near vision and development of recovery methods for them
阐明近视引起的立体视不足和身心疲劳的机制及其恢复方法
  • 批准号:
    18K12149
  • 财政年份:
    2018
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of New Strategy of Protein Design Based on Single Phage Sorting Technique
基于单噬菌体分选技术的蛋白质设计新策略的发展
  • 批准号:
    26282213
  • 财政年份:
    2014
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The Legal and Historical Analysis on Teacher Tenure Law in the United States
美国教师终身教职法的法律与历史分析
  • 批准号:
    25780466
  • 财政年份:
    2013
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Low-middle lattietudinal oceanic envrionments during the greatest mass extinction and its aftermath
最大规模灭绝及其后果期间的中低纬度海洋环境
  • 批准号:
    24740340
  • 财政年份:
    2012
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
A Study of judge method of Chinese classical text in Japan ,vest a class in these text, and this class is settled by China expert advisor.
日本对中国古典文本的评判方法研究,将这些文本归为一类,该类由中国专家顾问确定。
  • 批准号:
    23652076
  • 财政年份:
    2011
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Development of microfluidic cell based on light guide for the single molecule fluorescence measurements
开发基于光导的单分子荧光测量微流控池
  • 批准号:
    23657097
  • 财政年份:
    2011
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
A Comparative Research on Teacher Laws under Neo-Liberal Reforms in the U.S. and Japan
美日新自由主义改革下教师法比较研究
  • 批准号:
    22730626
  • 财政年份:
    2010
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Investigation of the folding dynamics of proteins based on the advanced method of single molecule detection
基于先进的单分子检测方法研究蛋白质折叠动力学
  • 批准号:
    21370072
  • 财政年份:
    2009
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Functional differences between malignant niche on the process of leukemia/lymphoma progression and hematopoietic stem cell niche on the process of cord blood graft engraftment
白血病/淋巴瘤进展过程中的恶性生态位与脐带血移植物植入过程中的造血干细胞生态位的功能差异
  • 批准号:
    21591234
  • 财政年份:
    2009
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Identification of novel growth factor for Glioma cancer stem cells
神经胶质瘤干细胞新型生长因子的鉴定
  • 批准号:
    21791377
  • 财政年份:
    2009
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)

相似海外基金

Quantum Vibrational Spectra of Hydrogen in Materials by Ab Initio Semiclassical Molecular Dynamics
利用从头算半经典分子动力学研究材料中氢的量子振动光谱
  • 批准号:
    23K04670
  • 财政年份:
    2023
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Singular limits in nearly integrable quantum systems and complex dynamical systems
近可积量子系统和复杂动力系统中的奇异极限
  • 批准号:
    22H01146
  • 财政年份:
    2022
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Singular nature in nearly integrable Hamiltonian systems and breakdown of classical-quantum correspondence
近可积哈密顿系统的奇异性和经典量子对应的分解
  • 批准号:
    17K05583
  • 财政年份:
    2017
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Quantization of molecular dynamics
分子动力学的量子化
  • 批准号:
    16K05511
  • 财政年份:
    2016
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
On the enhancement of tunneling probabilities in multi-dimensional systems
多维系统中隧道概率的增强
  • 批准号:
    16K17767
  • 财政年份:
    2016
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了