Geometry of symmetric spaces of rank one
一阶对称空间的几何
基本信息
- 批准号:19540084
- 负责人:
- 金额:$ 2.41万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2007
- 资助国家:日本
- 起止时间:2007 至 2009
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
It is not too much to say that Riemannian geometry has been developed with the investigation of geodesics. Among many smooth curves on a Riemannian manifold geometers have mainly studied geodesics. In this research, we propose to study some families of "nice" curves containing geodesics in order to investigate some other properties of Riemannian manifolds. It is known that on an arbitrary Riemannian symmetric space every geodesic is an orbit of some one-parameter subgroup of its isometry group. Noticing this fact, we say that a curve on a Riemannian manifold $M$ is a Killing helix if it is an orbit of some one-parameter subgroup of the isometry group of $M$, and we shed some light on the geometric study of them. Since they are integral curves of some Killing vector field, needless to say they are simple ; namely, they do not have self intersection points.Our program is to pick up some of the Killing helices in connection with some other geometric objects and study them or study other geometric objects by use of their properties. In this research we study Killing helices in connection with submanifolds. On many homogeneous submanifolds in a symmetric space of rank one, some kinds of geodesics are Killing helices if we consider them as curves on a symmetric space of rank one. This suggests to us that Killing helices are related to submanifolds when we study symmetric spaces of rank one.In the first half of this research, we obtain properties of Killing helices on a symmetric space of rank one which are obtained from the viewpoint of submanifolds. In the latter half, changing the point of view, we obtain properties of submanifolds obtained by making use of some properties of Killing helices on them.
可以说黎曼几何是随着测地线的研究而发展起来的。在众多光滑曲线中,黎曼流形上的几何学家主要研究的是测地线。在这项研究中,我们建议研究一些包含测地线的“好”曲线族,以研究黎曼流形的一些其他性质。众所周知,在任意黎曼对称空间上,每个测地线都是其等距群的某个单参数子群的轨道。注意到这一事实,如果黎曼流形 $M$ 上的一条曲线是 $M$ 等距群的某个单参数子群的轨道,我们就说它是杀伤螺旋,并且我们对他们。由于它们是某种 Killing 矢量场的积分曲线,所以不用说它们很简单;也就是说,它们没有自交点。我们的程序是拾取一些与其他几何对象相关的杀伤螺旋并研究它们或利用它们的属性来研究其他几何对象。在这项研究中,我们研究了与子流形相关的杀伤螺旋。在一阶对称空间中的许多齐次子流形上,如果我们将某些类型的测地线视为一阶对称空间上的曲线,那么它们就是杀死螺旋。这告诉我们,当我们研究一阶对称空间时,杀伤螺旋与子流形相关。在本研究的前半部分,我们从子流形的角度获得了一阶对称空间上杀伤螺旋的性质。后半部分,换个角度,我们得到了利用子流形上的杀伤螺旋的一些性质得到的子流形的性质。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Generalized Veronese manifolds and isotropic immersions
广义维罗内流形和各向同性浸入
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:前田定廣;宇田川誠一(日大医)
- 通讯作者:宇田川誠一(日大医)
Geodesic spheres in a nonflat complex space form and their integral curves of characteristic vector fields
非平坦复空间形式的测地球及其特征向量场积分曲线
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:T. Adachi;Y.H. Kim;S. Maeda
- 通讯作者:S. Maeda
Geodesic spheres in a complex projective space from the viewpoint of submanifold theory in Euclidean space
从欧几里得空间子流形理论的角度看复射影空间中的测地线球体
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:前田定廣;宇田川誠一(日大医);Takamitsu Yamauchi;Takamitsu Yamauchi;前田定廣
- 通讯作者:前田定廣
Schur's lemma for K\"ahler manifolds
K"ahler 流形的 Schur 引理
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:T. Adachi;S. Maeda;S. Udagawa
- 通讯作者:S. Udagawa
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MAEDA Sadahiro其他文献
MAEDA Sadahiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MAEDA Sadahiro', 18)}}的其他基金
Submanifolds and homogeneous curves
子流形和齐次曲线
- 批准号:
23540097 - 财政年份:2011
- 资助金额:
$ 2.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Submanifold Theory and Study of Circles
子流形理论与圆的研究
- 批准号:
14540080 - 财政年份:2002
- 资助金额:
$ 2.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Curves and Geometry
曲线和几何
- 批准号:
11640079 - 财政年份:1999
- 资助金额:
$ 2.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
半正な正則直線束と複素力学系
半正则直线丛和复杂动力系统
- 批准号:
20K14313 - 财政年份:2020
- 资助金额:
$ 2.41万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Study of fundamental properties of deformed Hermitian Yang-Mills connections and line bundle mean curvature flows
变形埃尔米特杨-米尔斯连接和线束平均曲率流的基本性质研究
- 批准号:
18K13415 - 财政年份:2018
- 资助金额:
$ 2.41万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A construction of the thery of homogeneous surfaces in Riemannian symmetric spaces
黎曼对称空间中齐次曲面的构造
- 批准号:
16K05133 - 财政年份:2016
- 资助金额:
$ 2.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Diversified research on the geometry of affinely connected manifolds and its application
仿射流形几何形状的多元化研究及其应用
- 批准号:
15K04861 - 财政年份:2015
- 资助金额:
$ 2.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Kuranishi structures on moduli spaces of stable maps in non-compact symplectic manifolds
非紧辛流形稳定映射模空间上的 Kuranishi 结构
- 批准号:
15K04850 - 财政年份:2015
- 资助金额:
$ 2.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)