Research on arrangements of geometric figures in space
空间几何图形排列研究
基本信息
- 批准号:17540127
- 负责人:
- 金额:$ 2.09万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2005
- 资助国家:日本
- 起止时间:2005 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
(1) To characterize unit distance graphs on the plane, or to determine the sup of their chromatic numbers is very difficult problem, and no big progress has been made so far. In the present study, we enumerate the unit distance graphs in the planes whose complements are also unit distance graphs in the plane. The total number of such graphs is 69, among them, 55 graphs are connected, and 7 graphs are self-complementary. (Ajoint work with S. V. Gervacio and Y. F. Lim of De La Salle University, Manila)(2) Concerning a sphere that passes through a prescribed number of lattice points, we have the following result. For every integer n>d>m>l, there is a (hyper) sphere in the d-dimensional Euclidean space that passes through exactly n lattice points, and these n lattice points span an m dimensional polytope. This is a generalization of a result on a circle in the plane obtained by myself and M. Matsumoto in 1998.(3) Aset of d+2 unit spheres in d-space is called a d-dimensional unit-sphere-system if every d+1 spheres have non-empty intersection, but the intersection of all d+2 spheres is empty. There is no 1-dimensional unit-sphere-system, and there are many 2-dimensional unit-sphere-systems. In the present study, we could prove that for every d>3, there is a d-dimensional unit-sphere-system, and there is no 3-dimensional unit-sphere-system. This settles unit-sphere-systemproblem that has been unsettled since 1989.(4) Concerning families of solid balls in 3-space, we could slightly improve the bounds on their chromatic numbers, and the bounds on the number of balls necessary to make a knotted cycle.
(1)要表征平面上的单位距离图,或确定其色数的SUP是非常困难的问题,到目前为止还没有取得很大进展。在本研究中,我们列举了平面上的单位距离图,其补充也是平面中的单位距离图。此类图的总数为69,其中有55个图形,并且7个图是自相符的。 (Ajoint与Manila De La Salle大学的S. V. Gervacio和Y. F. Lim合作)(2)关于经过规定的晶格点的球体,我们会有以下结果。对于每个整数n> d> m> l,d维欧几里得空间中都有一个(超级)球,可以通过正好的N晶格点,而这些N晶格点横跨M维多型。这是我本人和M. Matsumoto在1998年获得的平面上的圆的概括。(3)d+2个单位球的ASET在D空间中的ASET称为D+1个d+1球,如果每个D+1球都有非空的相交,但是所有D+2个球体的相互作用都是空的。没有一维单元 - 球体系统,并且有许多2维单位球系统。在本研究中,我们可以证明,对于每个d> 3,都有一个D维单元 - 球体系统,并且没有三维单位球系统。这解决了自1989年以来一直未解决的单位 - 球形系统问题。(4)关于3个空间的实心球家族,我们可以稍微提高其色数的界限,以及制作结节循环所需的球数量的界限。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The problem of thirteen spheres - A proof for undergraduate
十三球问题——本科生证明
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Toshio Sakata;Rvuichi Sawae;坂田 年男;坂田 年男;S. V. Gervacio;H. Maehara;H. Maehara;H. Maehara;H. Maehara;H. Maehara;H. Maehara;H.Maehara;H.Maehara
- 通讯作者:H.Maehara
Othello-like solitaire on a graph
图表上的奥赛罗式纸牌
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:H. Maehara;H. Maehara;H. Maehara
- 通讯作者:H. Maehara
On a special arrangement of spheres
关于球体的特殊排列
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Toshio Sakata;Rvuichi Sawae;坂田 年男;坂田 年男;S. V. Gervacio;H. Maehara;H. Maehara;H. Maehara;H. Maehara;H. Maehara;H. Maehara;H.Maehara;H.Maehara;S. V. Gervacio;H. Maehara;H. Maehara
- 通讯作者:H. Maehara
Reversing- a polyhedral surface
反转-多面体表面
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Toshio Sakata;Rvuichi Sawae;坂田 年男;坂田 年男;S. V. Gervacio;H. Maehara;H. Maehara;H. Maehara;H. Maehara;H. Maehara;H. Maehara;H.Maehara;H.Maehara;S. V. Gervacio;H. Maehara;H. Maehara;S. V. Gervacio;H. Maehara;H. Maehara;S.V.Gervacio;H.Maehara;H.Maehara;H. Maehara;H. Maehara;H. Maehara;H. Maehara;H.Maehara;H.Maehara;H.Maehara;V.S.Gervacio;H. Maehara;H. Maehara;H. Maehara;H. Maehara;H. Maehara;H. Maehara;H. Maehara;H. Maehara;H. Maehara;H. Maehara;H. Maehara;H. Maehara;H. Maehara;H. Maehara;H. Maehara;H. Maehara;H. Maehara;H. Maehara;H. Maehara;H. Maehara
- 通讯作者:H. Maehara
Partial order on a family of k-subsets of a linearly ordered set
线性有序集的 k 子集族的偏序
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Toshio Sakata;Rvuichi Sawae;坂田 年男;坂田 年男;S. V. Gervacio;H. Maehara;H. Maehara;H. Maehara;H. Maehara;H. Maehara;H. Maehara;H.Maehara;H.Maehara;S. V. Gervacio
- 通讯作者:S. V. Gervacio
共 26 条
- 1
- 2
- 3
- 4
- 5
- 6
MAEHARA Hiroshi的其他基金
Study on the distances and arrangement of finite-point-set
有限点集的距离与排列研究
- 批准号:1554013115540131
- 财政年份:2003
- 资助金额:$ 2.09万$ 2.09万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Random Geometry on the Sphere and its Applications
球体上的随机几何及其应用
- 批准号:1364012613640126
- 财政年份:2001
- 资助金额:$ 2.09万$ 2.09万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Study on arrangements of solid balls in 3-space
3维空间中实心球排列的研究
- 批准号:1164012911640129
- 财政年份:1999
- 资助金额:$ 2.09万$ 2.09万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Comprehensive Study on Discrete Geometry
离散几何综合研究
- 批准号:0830401908304019
- 财政年份:1996
- 资助金额:$ 2.09万$ 2.09万
- 项目类别:Grant-in-Aid for Scientific Research (A)Grant-in-Aid for Scientific Research (A)
相似海外基金
結晶格子中の分子鎖形態に焦点を当てた環状高分子群による結晶化機構の解明
重点关注晶格中的分子链形态,阐明环状聚合物基团的结晶机制
- 批准号:24K0155624K01556
- 财政年份:2024
- 资助金额:$ 2.09万$ 2.09万
- 项目类别:Grant-in-Aid for Scientific Research (B)Grant-in-Aid for Scientific Research (B)
Selective Control of THermal Conduction in Convalent Materials with Hierarchal Strucutures based on Underlying Mechanism behind Supression of Thermal Conduction on multi-size scales of Interfaces
基于多尺度界面热传导抑制机制的多级结构共价材料热传导选择性控制
- 批准号:20K0506220K05062
- 财政年份:2020
- 资助金额:$ 2.09万$ 2.09万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Realization of the novel THz devices based on control of defects in dilute bismide III-V compound semiconductor superlattice
基于稀双胺III-V族化合物半导体超晶格缺陷控制的新型太赫兹器件的实现
- 批准号:18K1414018K14140
- 财政年份:2018
- 资助金额:$ 2.09万$ 2.09万
- 项目类别:Grant-in-Aid for Early-Career ScientistsGrant-in-Aid for Early-Career Scientists
Theoretical framework supporting direct optical observations of ordered structures of soft matter
支持软物质有序结构直接光学观察的理论框架
- 批准号:17H0294717H02947
- 财政年份:2017
- 资助金额:$ 2.09万$ 2.09万
- 项目类别:Grant-in-Aid for Scientific Research (B)Grant-in-Aid for Scientific Research (B)
Developing three-dimensional measurement method for nano- and atomistic structures using focal series of aberration-corrected transmission electron microscopy images
使用像差校正透射电子显微镜图像的焦点系列开发纳米和原子结构的三维测量方法
- 批准号:16K1368816K13688
- 财政年份:2016
- 资助金额:$ 2.09万$ 2.09万
- 项目类别:Grant-in-Aid for Challenging Exploratory ResearchGrant-in-Aid for Challenging Exploratory Research