Random Geometry on the Sphere and its Applications
球体上的随机几何及其应用
基本信息
- 批准号:13640126
- 负责人:
- 金额:$ 1.34万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2002
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1. For a graph G with N edges, put its vertices on the d-dimensional unit sphere. Let D denote the minimum spherical distance between a pair of points that correspond to a pair of adjacent vertices in G. Then, it was proved that the distribution of ND^d tends to exponential distribution with mean dB(1/2,d/2) as N tends to infinity, where B(p,q) denotes the beta function.2. Let F={C_1,C_2,…,C_N} be a family of caps on the two dimensional unit sphere. A cap C_i is called extremal if the centers of those caps that intersect C_i are all contained in the same side of a great circle passing through the center of C_i. A cap that is smaller than a hemisphere is called proper. It was proved that if F has no extremal cap then the intersection graph G(F) of F is connected. If furthermore, all caps in F are proper then G(F) is 2-connected. For higher dimensional sphere, the similar result never holds. Applying this the following asymptotic result was proved. Now, let F denote a family of N random caps all of the same size (4πc/N)log N. If c>1/2, then the probability that G(F) is 2-connected tends to 1 as N tends to infinity. If c<1/4, then the probability that G(F) is connected tends to 0 as N tends to infinity.3. Let AOB be a triangle in the 3-space with angle ∠AOB=ω. When we look at this angle from a viewpoint P, this angle looks as though the angle of the orthogonal projection of AOB on a plane perpendicular to the line PO. And its size changes according to the location of the viewpoint P. If P is a random point on a unit sphere centered at O, then the 'visual' size of the angle ∠AOB is called the random visual size and denoted by Θ(ω). By a joint study with Yoich Maeda (Tokai univ.), we proved that the expected value of Θ(ω) is equal to ω, and derived a formula to calculate the variance of Θ(ω).
1。对于具有n个边缘的图G,将其顶点放在D维单元球体上。令D表示与G中的一对相邻顶点相对应的一对点之间的最小球体距离。然后,证明ND^d的分布倾向于用平均DB(1/2,d/2)指数分布,因为N趋于无限,其中B(p,q)表示beta函数。2。令F = {C_1,C_2,…,C_N}成为二维单位球体上的帽子家族。如果与C_I相交的CAP的中心都包含在通过C_I中心的大圆圈的同一侧,则称为cap c_i。小于半球的盖称为正确。事实证明,如果F没有极端盖,则连接F的相交图G(F)。如果此外,F正确的F中的所有帽子都会正确,则G(f)是2。对于更高的维球,类似的结果永远不会成立。应用这一点证明了以下不对称结果。现在,让f表示一个n随机盖的家族所有相同大小(4πc/n)log n的家族。如果c> 1/2,则g(f)与n趋向于无穷大的概率趋于1。如果c <1/4,则连接g(f)的概率趋向于0,因为n趋于无穷大。3。让AOB为3个空间中的三角形,其角度∂AOB=ω。当我们从视点p看这个角度时,这个角度看起来好像AOB在垂直于线PO的平面上的正交投影的角度。并且其大小根据视点P的位置而变化。如果P是以O为中心的单位球上的随机点,则角度∂AOB的“视觉”大小称为随机视觉大小,并用θ(ω)表示。通过与Yoich Maeda(Tokai Univ。)的联合研究,我们证明了θ(ω)的期望值等于ω,并得出了计算θ(ω)方差的公式。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
H.Maehara: "On acute triangulation of quadrilaterals"Proc. JCDCG2000(LNCS 2098). 237-243 (2001)
H.Maehara:“论四边形的锐角三角剖分”Proc。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Maehara, N.Tokushige: "When does a planar bipartite framework admit a continuous deformation ?"Theoretical Computer Science. 263. 345-354 (2001)
H.Maehara、N.Tokushige:“平面二分框架何时允许连续变形?”理论计算机科学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Maehara, A.Oshiro: "Piercing a set of disjoint balls by a line"Journal of Combinatorial Theory (A). 94. 393-398 (2001)
H.Maehara、A.Oshiro:“用一条线刺穿一组不相交的球”组合理论杂志 (A)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Maehara: "Acute triangulations of polygons"European Journal of Combinatorics. 23. 45-55 (2002)
H.Maehara:“多边形的急性三角剖分”欧洲组合学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H. Maehara: "On the total edge-length of a tetrahedron"American Mathematical Monthly. 108. 967-969 (2002)
H. Maehara:“论四面体的总边长”美国数学月刊。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
共 10 条
- 1
- 2
MAEHARA Hiroshi的其他基金
Research on arrangements of geometric figures in space
空间几何图形排列研究
- 批准号:1754012717540127
- 财政年份:2005
- 资助金额:$ 1.34万$ 1.34万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Study on the distances and arrangement of finite-point-set
有限点集的距离与排列研究
- 批准号:1554013115540131
- 财政年份:2003
- 资助金额:$ 1.34万$ 1.34万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Study on arrangements of solid balls in 3-space
3维空间中实心球排列的研究
- 批准号:1164012911640129
- 财政年份:1999
- 资助金额:$ 1.34万$ 1.34万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Comprehensive Study on Discrete Geometry
离散几何综合研究
- 批准号:0830401908304019
- 财政年份:1996
- 资助金额:$ 1.34万$ 1.34万
- 项目类别:Grant-in-Aid for Scientific Research (A)Grant-in-Aid for Scientific Research (A)
相似国自然基金
空间填充设计的若干最优准则与构造方法研究
- 批准号:11901199
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
Alexandrov 空间上与距离函数最小值相关的几何
- 批准号:11971057
- 批准年份:2019
- 资助金额:50 万元
- 项目类别:面上项目
关于图的距离矩阵的相关特征值的研究
- 批准号:11901498
- 批准年份:2019
- 资助金额:23.1 万元
- 项目类别:青年科学基金项目
距离正则图最小特征值的若干问题
- 批准号:11801388
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
有限环上N-重量码及其应用研究
- 批准号:61672036
- 批准年份:2016
- 资助金额:63.0 万元
- 项目类别:面上项目
相似海外基金
Minimum separation distance solution
最小间隔距离解决方案
- 批准号:5975359753
- 财政年份:2020
- 资助金额:$ 1.34万$ 1.34万
- 项目类别:Feasibility StudiesFeasibility Studies
Minimum Separation Distance
最小间隔距离
- 批准号:7651776517
- 财政年份:2020
- 资助金额:$ 1.34万$ 1.34万
- 项目类别:Collaborative R&DCollaborative R&D
A Study on Minimum Euclidean Distance Search Associative Memory Utilizing Neuron MOSFET
利用神经元MOSFET的最小欧氏距离搜索联想存储器的研究
- 批准号:20K1479520K14795
- 财政年份:2020
- 资助金额:$ 1.34万$ 1.34万
- 项目类别:Grant-in-Aid for Early-Career ScientistsGrant-in-Aid for Early-Career Scientists
Development of simple estimation model for minimum ignitiion energy of flowing flammable gas based on quenching distance
基于熄火距离的流动可燃气体最小点火能简易估算模型的建立
- 批准号:18K0464118K04641
- 财政年份:2018
- 资助金额:$ 1.34万$ 1.34万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Robust Inferences Based on Minimum Distance for Semiparametric Models
半参数模型基于最小距离的鲁棒推理
- 批准号:355970-2013355970-2013
- 财政年份:2017
- 资助金额:$ 1.34万$ 1.34万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual