Study on arrangements of solid balls in 3-space

3维空间中实心球排列的研究

基本信息

  • 批准号:
    11640129
  • 负责人:
  • 金额:
    $ 1.54万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1999
  • 资助国家:
    日本
  • 起止时间:
    1999 至 2000
  • 项目状态:
    已结题

项目摘要

1. A cyclic sequence of nonoverlapping unit balls in R^3 in which each consecutive balls are tangent, is called a necklace of pearls. We show that to make a knotted necklace of pearls, 15 unit balls are sufficient. To make a knotted necklace that can be inscribed between a pair of parallel planes with distance 2+√<2> apart, 16 unit balls are necessary, and the trefoil is the unique knot that can be made by 16 unit balls.2. A chain is a finite sequence of balls in which each consecutive pair of balls are tangent. Make a graph by representing vertices by balls, and edges by chains connecting two vertex-balls. Let b_n be the minimum number of balls necessary to make a complete graph of n vertices. Then we got the bound c_1n^3<b_n<c_2n^3 log n. A similar bound is also obtained when we use balls all sitting on a fixed table.3. For a family F of balls in d-dimensional space R^d, let λ= λ(F)=(the max. radius) / (the min. radius). We proved that for any family of n balls in R^d, there is a direction such that any line with this direction intersects at most O (√<(1+logλ)n log n>) balls. On the otherhand, for n【greater than or equal】d, there is a family of nonoverlapping n balls in R^d such that for any direction, there is a line with this direction that intersects at least n-d+1 balls. For a family of balls sitting on a fixed table in R^3, we also got an upper bound of the average number of balls pierced by a vertical line meeting the table.4. If a family of nonoverlapping balls in R^3 satisfies that logλ=o ((n/log n)^<1/3>), then there is a plane both sides of which contain n/2-o (n) intact balls.
1。r^3中非重叠的单位球的环状序列,其中每个连续的球是切线的,称为珍珠项链。我们表明,要制作一条打结的珍珠项链,15个单位球就足够了。要制作一条打结的项链,可以在一对具有2+√<2>相距的平行平面之间刻有16个单位球,而三叶线是可以由16个单位球制成的独特结。2。链条是一个有限的球序列,其中每对连续的球是切线的。通过用球来表示顶点,并通过连接两个顶点球的链条来制作图形。令b_n为完整的n个顶点所需的最小球数。然后,我们得到了绑定的C_1N^3 <b_n <c_2n^3 log n。当我们使用所有坐在固定桌上的球时,也会获得类似的界限3。对于在d维空间中的小球系列r^d,令λ=λ(f)=(最大半径) /(最小半径)。我们证明,对于在r^d中的任何n个球的家族,都有一个方向使得与此方向的任何线最多相交O(√<(1+logλ)n log n log n>)球。另一方面,对于n【d,r^d中有一个非重叠的n个球的家族,使得在任何方向上,这个方向都有一条线,至少与N-D+1球相交。对于一个坐在r^3的固定桌上的球家族,我们还获得了平均球数的上限,该球的平均球数是通过与桌子相遇的垂直线刺穿的。4。如果r^3中的非重叠球系列满足logλ= o(((n/log n)^<1/3>),则有一个平面两侧包含n/2-o(n)完整球。

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
H.Maehara: "Cutting a set of disks by a line with leaving many intact…"Journal of Cominatorial Theory A. 90. 235-240 (2000)
H.Maehara:“用一条线切割一组圆盘,并留下许多完整的圆盘......”Cominatorial Theory A. 90. 235-240 (2000)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Maehara : "On the waiting time in a Janken game"Journal of Applied Probability. 37. 601-605 (2000)
H.Maehara:“论 Janken 游戏中的等待时间”《应用概率杂志》。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S.V.Gervacio and H.Maehara: "Subdividing a graph toward a unit-distance graph in the plane"Europ.J.Combin. 21. 223-229 (2000)
S.V.Gervacio 和 H.Maehara:“将图细分为平面上的单位距离图”Europ.J.Combin。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S.V.Gevoacio : "Subdioiding a graph toward a unit-distance graph in the plane"European Journal of Combinatorics. 21. 223-229 (2000)
S.V.Gevoacio:“将图细分为平面中的单位距离图”《欧洲组合学杂志》。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S.Kudaka: "Uncertainity principle for proper time and mass"Journal of Mathematical Physics. 40. 1237-1245 (1999)
S.Kudaka:“固有时间和质量的不确定性原理”数学物理杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MAEHARA Hiroshi其他文献

MAEHARA Hiroshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MAEHARA Hiroshi', 18)}}的其他基金

Research on arrangements of geometric figures in space
空间几何图形排列研究
  • 批准号:
    17540127
  • 财政年份:
    2005
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on the distances and arrangement of finite-point-set
有限点集的距离与排列研究
  • 批准号:
    15540131
  • 财政年份:
    2003
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Random Geometry on the Sphere and its Applications
球体上的随机几何及其应用
  • 批准号:
    13640126
  • 财政年份:
    2001
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Comprehensive Study on Discrete Geometry
离散几何综合研究
  • 批准号:
    08304019
  • 财政年份:
    1996
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了