Topology of hyperspaces, mapping spaces and universal spaces

超空间、映射空间和通用空间的拓扑

基本信息

  • 批准号:
    17540061
  • 负责人:
  • 金额:
    $ 2.3万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2005
  • 资助国家:
    日本
  • 起止时间:
    2005 至 2007
  • 项目状态:
    已结题

项目摘要

To achieve three objects mentioned at the beginning of this project, the head investigator have been making researches in cooperation with investigators and invited W. Kubis from Poland and T. Banakh from Ukraine to do joint works and to exchange information. Finally, we obtained many good results. Concerning the first object to specify under what conditions and to what spaces each of various hyperspaces is homeomorphic (even in non-separable case), by many joint works conducted by the head, we had such results as: specifying hyperspaces on Banach spaces with the Wijsman topology; finding conditions of metric spaces whose hyperspaces of closed sets are ANR's; proving that the hyperspace of closed convex sets in a normed space is an ANR with respect to Hausdorff uniformity and Attouch-Wets topology and for a finite-dimensional normed space it is homeomorphic to the product of the base space and the Hilbert cube; specifying hyperspaces consisting of compacta of various types; proving tha … More t the hyperspaces of bounded closed sets in the space of irrationals and the Noebeling spaces. Concerning the second object to find mapping spaces being infinite-dimensional manifold and to clarify their topological structure, Yagasaki classified the connected component of the inclusion in the space of embeddings of a subpolyhedron into a surface and generalized Berlange's result on the group of measure-preserving homeo-morphisms to non-compact case. The head collaborated Uehara on clarifying topological structure of the space of lower semi-continuous functions. Moreover, in the joint work with Banakh, Mine and Yagasaki, he proved that the homeomorphism group of non-compact surfaces with the Whitney topology can be embedded in the product of the Hilbert space and the direct limit of Euclidean spaces as open sets. Concerning the object to enrich studies on non-separable infinite-dimensional universal spaces and to complete the proof of characterization of Noebeling spaces, the latter was done by Nagorko and we could not give any contribution but the head and Mine could obtain the classification theorem on open sets in LF-spaces, which can be a foothold on studying LF-manifolds. Less
为了提及该项目的三个对象,首席调查员押注了来自波兰的W. kubis和来自乌克兰的T. Banakh进行联合工作并交换信息。对于同型寓言案例,各种超级空间的spach是由头部进行的许多联合作品的结果,我们取得了这样的结果:在Wijsman拓扑中指定在Banach空间上的超级空间;对于基本空间和Hilbert Cube的产物而言,对拓扑的拓扑和有限的空间是同构的;第二个对象是映射空间是无限的二歧管,并阐明了其在表面嵌入的空间中包含的拓扑结构,并在表面上的berlange嵌入到了对非compactact案件的概述Head与Banakh,Mine和Yagasaki的较低半连续功能空间的澄清结构合作。欧几里得空间作为开放式集合的直接。 LF空间中的集合可以是研究LF-manifolds的父亲

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Spaces of Closed Convex Sets in Euclidean Spaces with the Fell Topology
Measure-presserving homeomorphisms of noncompact manifolds and mass flow toward ends
非紧流形的保测同胚和流向两端的质量流
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T;Yagasaki;K. Sakai and Z. Yang;T. Yagasaki;T. Yagasaki
  • 通讯作者:
    T. Yagasaki
Open subsets of LF-spaces
LF 空间的开子集
Hyperspaces of Euclidean space with Hausdorff metric
具有豪斯多夫度量的欧几里得空间的超空间
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    W;Kubis・酒井克郎
  • 通讯作者:
    Kubis・酒井克郎
Hausdorff hyperspaces of Rn and their dense subspace
Rn 的豪斯多夫超空间及其稠密子空间
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SAKAI Katsuro其他文献

SAKAI Katsuro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SAKAI Katsuro', 18)}}的其他基金

Topology of Infinite-Dimensional Manifolds and Inductive Limits
无限维流形拓扑和归纳极限
  • 批准号:
    22540063
  • 财政年份:
    2010
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Topology of Infinite-Dimensional Manifolds and Universal Spaces
无限维流形和宇宙空间的拓扑
  • 批准号:
    14540059
  • 财政年份:
    2002
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies on Infinite-Dimensional Manifolds and Menger Manifolds, and their Applications
无限维流形和Menger流形的研究及其应用
  • 批准号:
    10640060
  • 财政年份:
    1998
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

基于深层神经网络结合空间映射的光器件建模与优化方法研究
  • 批准号:
    62375025
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于数据空间逆映射的生产现场预测性维护关键技术研究
  • 批准号:
    62373104
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
Banach空间集值保度量映射的表示理论
  • 批准号:
    12271344
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
关于拟共形映射哈代空间理论和Hölder正则性的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
面向微波器件EDA的空间映射结合多值深层神经网络的逆向建模方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目

相似海外基金

Mapping the integration of T cell fate control across time and space
绘制 T 细胞命运控制跨时间和空间的整合图
  • 批准号:
    DP240101851
  • 财政年份:
    2024
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Discovery Projects
EmoMap: Emotion Mapping in Semantic Space
EmoMap:语义空间中的情感映射
  • 批准号:
    24K21058
  • 财政年份:
    2024
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Spatial Profiling of Melanocytic Tumors and Their Microenvironment
黑素细胞肿瘤及其微环境的空间分析
  • 批准号:
    10729434
  • 财政年份:
    2023
  • 资助金额:
    $ 2.3万
  • 项目类别:
Brain glycosphingolipids and Alzheimer's disease
脑鞘糖脂与阿尔茨海默病
  • 批准号:
    10738379
  • 财政年份:
    2023
  • 资助金额:
    $ 2.3万
  • 项目类别:
Eclipse Mapping Exoplanet Atmospheres with the James Webb Space Telescope
使用詹姆斯·韦伯太空望远镜绘制系外行星大气日食图
  • 批准号:
    2814903
  • 财政年份:
    2023
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了