Topology of Infinite-Dimensional Manifolds and Universal Spaces
无限维流形和宇宙空间的拓扑
基本信息
- 批准号:14540059
- 负责人:
- 金额:$ 2.18万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Throughout three years, making our efforts to achieve the following three intensions in this subject, we have many results relating to each item.1.Characterizing universal spaces for various classes of non-separable spaces which had not been investigated ;2.In order to enrich the theory of infinite-dimensional manifolds, finding natural examples of non-separable infinite-dimensional manifolds and investigating their topological and geometrical structures ;3.Studying other subjects related to this subject and applying each others.For the first item, by the joint work of Sakai and his student Yaguchi and the work of the other student Mine, Bestvina-Mogilski's theory of absorbing sets have been extended to non-separable absolute Borel classes. By Iwamoto's studies, it have been clear that Ageev's proof of the characterization of Nobeling spaces contains gaps. The complete proof is excepted.For the second item, we have many results concering hyperspaces and mapping spaces. The hyperspace of non-empty closed sets in a non-compact metric space is studied by introducing various topologies instead of the classical Vietoris topology, that is, the Hausdorff metric topology, the Fell topology, the Attouch-Wets topology, the Wijsman topology, etc. Sakai has studied with Banakh, Yang, Kubis and his students, Kurihara, Yaguchi and Mine, and obtained results that such hyperspaces are homeomorphic to infinite-dimensional universal spaces for some classes and that they are AR's even if they are not known about the above. On the other hand, Yagasaki have been working on the spaces of embeddings and homeomorphisms and he have many results. Moreover, Uehara had a result concerning the spaces of upper semi-ccontinuous set-valued functions.Concering the third item, there are results by Sakai and Sakai-Iwamoto and Kawamura and Yamazaki have many interesting results.
在三年中,我们努力实现以下三个问题,我们有许多与每个项目有关的结果。1。尚未研究的各种非分离空间的通用空间来示意; 2.丰富了无限二维流形的理论,找到了自然的无分离无限二维流形的例子,并研究了它们的拓扑结构和几何结构; 3.研究与该主题相关的其他主题,并应用彼此相关的其他主题。 Sakai和他的学生Yaguchi的作品以及另一个学生矿山的作品,Bestvina-Mogilski的吸收套装理论已扩展到不可分割的绝对Borel类。根据iWamoto的研究,很明显,Ageev证明了诺贝林空间的表征的证据含有差距。完整的证明是不例外的。对于第二项,我们有许多有关超空间和映射空间的结果。通过引入各种拓扑而不是经典的越野拓扑,即Hausdorff度量拓扑,秋季拓扑,Attouch-Wets-Wets Topology,Wijsman拓扑,Wijsman拓扑,,Wijsman拓扑, Sakai曾与Banakh,Yang,Kubis和他的学生Kurihara,Yaguchi和Mine一起学习,并获得了结果,这些超空间对某些班级而言是同构的无限二维通用空间,即使他们不知道AR以上。另一方面,Yagasaki一直在嵌入嵌入和同构的空间,他有很多结果。此外,UEHARA的结果是关于上半连续的设置值函数的空间。第三个项目,Sakai和Sakai-Iwamoto和Kawamura和Kawamura和Yamazaki的结果有许多有趣的结果。
项目成果
期刊论文数量(58)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The AR-Property of the spaces of closed convex sets
- DOI:10.4064/cm106-1-2
- 发表时间:2006
- 期刊:
- 影响因子:0.4
- 作者:K. Sakai;Masato Yaguchi
- 通讯作者:K. Sakai;Masato Yaguchi
A note on singular homology groups of infinite product of compacta
关于紧致无穷积的奇异同调群的注解
- DOI:
- 发表时间:2002
- 期刊:
- 影响因子:0
- 作者:酒井 克郎;岩本 豊;酒井 克郎;川村 一宏;川村 一宏
- 通讯作者:川村 一宏
Spaces of upper semi-continuous multi-valued functions which are absolute retracts
绝对收回的上半连续多值函数的空间
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:T.Banakh;栗原 正幸;酒井 克郎;矢ヶ崎 達彦;上原 成功
- 通讯作者:上原 成功
K.Sakai, M.Yaguchi: "Characterizing manifolds modeled on certain dense subspaces of nonseparable Hilbert spaces"Tsukuba Journal of Mathematics. 27(1). 143-159 (2003)
K.Sakai,M.Yaguchi:“表征基于不可分希尔伯特空间的某些稠密子空间的流形”筑波数学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Homotopy types of the components of spaces of embeddings of compact polyhedra into 2-manifolds
紧多面体嵌入2-流形的空间分量的同伦类型
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:F.Maitani;H.Yamaguchi;T.Yagasaki
- 通讯作者:T.Yagasaki
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SAKAI Katsuro其他文献
SAKAI Katsuro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SAKAI Katsuro', 18)}}的其他基金
Topology of Infinite-Dimensional Manifolds and Inductive Limits
无限维流形拓扑和归纳极限
- 批准号:
22540063 - 财政年份:2010
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topology of hyperspaces, mapping spaces and universal spaces
超空间、映射空间和通用空间的拓扑
- 批准号:
17540061 - 财政年份:2005
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on Infinite-Dimensional Manifolds and Menger Manifolds, and their Applications
无限维流形和Menger流形的研究及其应用
- 批准号:
10640060 - 财政年份:1998
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似国自然基金
基于半导体器件的宇宙空间粒子LET值谱测量方法研究
- 批准号:11475272
- 批准年份:2014
- 资助金额:86.0 万元
- 项目类别:面上项目
空间新型大尺度可折展式机构创新设计理论与方法研究
- 批准号:50935002
- 批准年份:2009
- 资助金额:200.0 万元
- 项目类别:重点项目
相似海外基金
SBIR Phase I: Universal Crystal Growth Capsule and Novel Wafer Dicing Tool for In-Space Manufacturing
SBIR 第一阶段:用于太空制造的通用晶体生长舱和新型晶圆切割工具
- 批准号:
2419346 - 财政年份:2024
- 资助金额:
$ 2.18万 - 项目类别:
Standard Grant
Harnessing ZBP1-triggered cell death to enhance influenza vaccine responsiveness
利用 ZBP1 触发的细胞死亡来增强流感疫苗的反应性
- 批准号:
10884586 - 财政年份:2023
- 资助金额:
$ 2.18万 - 项目类别:
Harnessing ZBP1-driven cell death to improve influenza vaccine efficacy
利用 ZBP1 驱动的细胞死亡来提高流感疫苗的功效
- 批准号:
10455196 - 财政年份:2021
- 资助金额:
$ 2.18万 - 项目类别:
A universal model for detector simulations for space applications
空间应用探测器模拟的通用模型
- 批准号:
2582396 - 财政年份:2021
- 资助金额:
$ 2.18万 - 项目类别:
Studentship
Theory of the universal Teichmüller space in harmonic analysis
普遍理论
- 批准号:
21F20027 - 财政年份:2021
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for JSPS Fellows