Remark on modular representations of non-commutative algebraic systems

关于非交换代数系统的模表示的评述

基本信息

  • 批准号:
    16540023
  • 负责人:
  • 金额:
    $ 2.14万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2007
  • 项目状态:
    已结题

项目摘要

There are several kinds of algebras that appear in the studies of algebraic groups, quantum groups and conformal field theory As we may carry out detailed analysis of these algebras through applying various kinds of methods, there exists a research field which we might call "Special Noncommutative Algebras". Based on our 'previous research on modular representations of Hecke algebras, we set our goals in this research project in two themes: the first is development of our techniques to new algebras, and the second is to solve open problems in modular representation theory of Hecke algebras. For the first goal, we picked up degenerate affine BMW algebras defined over arbitrary algebraically closed field, and succeeded in constructing all the irreducible finite dimensional representations. This is a joint work with Mathas and Rui. This work influenced several other succeeding research on affine BMW algebras by other researchers. During the period, Rouquier showed that Cherednik algebras … More provide quasihereditary covers of cyclotomic Hecke algebras defined over the field of complex numbers. Thus, we have a chance to categorify Fock spaces. This gives a broad perspective which generalizes the head investigator's decomposition number theorem. By the above mentioned research developments, we have shifted to research which is more closely tied with representation theory of conformal field theory in the last year of the project, and we have obtained new insights for next research project. For the second goal, the head investigator has proved the modular branching rule for cyclotomic Hecke algebras, which was mentioned in the research proposal as one of the expected achievements. We have also settled a conjecture by Dipper, James and Murphy which has been open for 12 years. This is a joint work with Jacon. Recall that the Mullineux conjecture in the representation theory of the symmetric group (and the Hecke algebras of type A) had been open for many years, and it was finally settled by Kleshchev (and Brundan) in 90's, which was a big achievement. By applying Littelmann's path model to representation theory of Hecke algebras, we have obtained completely new description of the famous Mullineux map. Namely, the Mullineux map is always given by transpose of partitions even for non semi-simple Hecke algebras, if we work in the path model. The head investigator has published 13 papers (of which 8 papers are refereed, 1 is translation of a refereed paper) and presented 15 talks on the above results and results on the representation type of Hecke algebras of classical type during the research period. Less
代数组,量子群和保形场理论的研究中出现了几种代数,因为我们可以通过应用各种方法对这些代数进行详细分析,存在一个研究领域,我们可能称之为“特殊非共同代数”。基于我们先前对Hecke代数模块化表示的研究,我们以两个主题设定了该研究项目中的目标:第一个是向新代数的技术开发我们的技术,第二个是解决Hecke代数模块化代表理论中的开放问题。对于第一个目标,我们选择了根据任意代数封闭的封闭场定义的退化仿射BMW代数,并成功地构建了所有不可还原的有限维度表示。这是与Mathas和Rui的联合工作。这项工作影响了其他研究人员对仿射宝马代数的其他成功研究。在此期间,鲁奎尔(Rouquier)表明,Cherednik代数…更多提供了在复数领域定义的循环组合hecke代数的准植物覆盖物。那就是我们有机会对fock空间进行分类。这给出了广泛的视角,从而概括了主调查员的分解编号定理。通过上述研究的发展,我们已经转向了研究的研究理论在项目的最后一年中更加紧密相关,并且我们为下一个研究项目获得了新的见解。对于第二个目标,首席调查员已证明了Cyclotomic Hecke代数的模块化分支规则,该代数在研究建议中被提及是预期的成就之一。我们还解决了Dipper,James和Murphy的猜想,该猜想已经开放了12年。这是与雅各共同的合作。回想一下,对称群体的表示理论(以及A型Hecke代数)在90年代的Kleshchev(和Brundan)最终解决,这是一个很大的成就。通过将Littelmann的路径模型应用于Hecke代数的表示理论,我们获得了著名的Mullineux图的全新描述。也就是说,如果我们在路径模型中工作,即使对于非半个半普通代数的分区,也会给予mullineux图。首席调查员已经发表了13篇论文(其中8篇论文是参考论文的翻译),并就上述结果进行了15次谈判,并在研究期间就经典类型的Hecke代数的代表类型进行了讨论。较少的

项目成果

期刊论文数量(48)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cyclotomic Wenzl Algebras
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Ariki;Andrew Mathas;H. Rui
  • 通讯作者:
    S. Ariki;Andrew Mathas;H. Rui
Representation type of Hecke algebras and the Poincar\'e polynomial
Hecke 代数和 Poincare 多项式的表示类型
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Susumu;Ariki;A. Hanaki;Susumu Ariki
  • 通讯作者:
    Susumu Ariki
Tensor product of two basic representations of $U_v(\hat{sl}_e)$
$U_v(hat{sl}_e)$ 的两个基本表示的张量积
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A.Hanaki;M.Yoshikawa;Susumu Ariki;Susumu Ariki
  • 通讯作者:
    Susumu Ariki
Modular representation theory of Hecke algebras through categorification and its combinatorialization(I),(II),(III)
赫克代数的分类及其组合的模表示论(I),(II),(III)
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A.Hanaki;M.Yoshikawa;Akihide Hanaki;Susumu Ariki;Susumu Ariki;Susumu Ariki
  • 通讯作者:
    Susumu Ariki
On a conjecture by Dipper, James and Murphy
迪普、詹姆斯和墨菲的猜想
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Akihide Hanaki;Katsuhiro Uno;Susumu Ariki;Susumu Ariki
  • 通讯作者:
    Susumu Ariki
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ARIKI Susumu其他文献

ARIKI Susumu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ARIKI Susumu', 18)}}的其他基金

Towards further development of the representation theory of cyclotomic Hecke algebras
迈向分圆赫克代数表示论的进一步发展
  • 批准号:
    20340004
  • 财政年份:
    2008
  • 资助金额:
    $ 2.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Representations of Hecke algebras
赫克代数的表示
  • 批准号:
    14540014
  • 财政年份:
    2002
  • 资助金额:
    $ 2.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on the representations of cyclotomic Hecke algebras and finite algebraic groups of classical type
分圆Hecke代数和经典型有限代数群的表示研究
  • 批准号:
    12640016
  • 财政年份:
    2000
  • 资助金额:
    $ 2.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

辫子群酉表示与模块化张量范畴中的量子信息与拓扑量子计算
  • 批准号:
    12226321
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    数学天元基金项目
辫子群酉表示与模块化张量范畴中的量子信息与拓扑量子计算
  • 批准号:
    12226320
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
基于数据特征的多模态过程辨识建模方法
  • 批准号:
    61873138
  • 批准年份:
    2018
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
面向知识重用的协同知识建模和表示方法研究
  • 批准号:
    70401001
  • 批准年份:
    2004
  • 资助金额:
    13.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

An application of mock modular forms to representation theory
模拟模块化形式在表示论中的应用
  • 批准号:
    23K19018
  • 财政年份:
    2023
  • 资助金额:
    $ 2.14万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Modular representation theory, Hilbert modular forms and the geometric Breuil-Mézard conjecture.
模表示理论、希尔伯特模形式和几何布勒伊-梅扎德猜想。
  • 批准号:
    EP/W001683/1
  • 财政年份:
    2022
  • 资助金额:
    $ 2.14万
  • 项目类别:
    Fellowship
Sheaf-Theoretic Methods in Modular Representation Theory
模表示理论中的层理论方法
  • 批准号:
    2202012
  • 财政年份:
    2022
  • 资助金额:
    $ 2.14万
  • 项目类别:
    Standard Grant
A representation of the Teichmuller modular group as a group of rational transfomations and its applications to dynamical systems and Kleinian groups
Teichmuller 模群作为一组有理变换的表示及其在动力系统和 Kleinian 群中的应用
  • 批准号:
    21K03271
  • 财政年份:
    2021
  • 资助金额:
    $ 2.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Modular Representation Theory and Categorification with Applications
模块化表示理论及其分类及其应用
  • 批准号:
    2101791
  • 财政年份:
    2021
  • 资助金额:
    $ 2.14万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了