Modular representation theory, Hilbert modular forms and the geometric Breuil-Mézard conjecture.
模表示理论、希尔伯特模形式和几何布勒伊-梅扎德猜想。
基本信息
- 批准号:EP/W001683/1
- 负责人:
- 金额:$ 38.97万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The Langlands program is one of the most striking programs in mathematical research today. It suggests deep connections between algebra, geometry, number theory and analysis. One of the biggest results in this program to date is the proof of Fermat's Last Theorem by Sir Andrew Wiles, which sparked headlines in the national newspapers. The result is as follows: let n be an integer greater than 2, then there are no non-zero integers x, y and z such that x^n + y^n = z^n. While this is a relatively accessible statement, the proof of this result came more than three centuries after it was first conjectured and the efforts towards proving it led to huge innovations in number theory and beyond. The key to proving Fermat's Last Theorem was a deep connection between mathematical objects called modular forms and elliptic curves: the modularity theorem. My work is on a result closely related to this theorem: Serre's modularity conjecture. This was stated by Jean-Pierre Serre in 1973 and refined in 1987, and in fact, has Fermat's Last Theorem, as one of its consequences. The equation in Fermat's Last Theorem is an example of a Diophantine equation, named after the ancient Greek mathematician Diophantus. These are polynomial equations with integer coefficients whose solutions are also restricted to integers. Solving Diophantine equations is one of the main goals of number theory. One way to try to study such equations is to investigate Galois representations, which are mathematical objects capturing symmetries of Diophantine equations. Serre discovered that such representations can be studied by looking at modular forms, which are functions satisfying some nice symmetry properties. This is called the "weak" version of Serre's modularity conjecture. The "strong" version describes the properties of the modular form that corresponds to any given Galois representation. Serre's discoveries were eventually proved correct by Chandrashekhar Khare and Jean-Pierre Wintenberger, building on work of many other mathematicians. The proof relies heavily on earlier work showing that the "weak" version implies the "strong" version. Inspired by work of Kevin Buzzard, Fred Diamond and Frazer Jarvis, I aim to achieve results similar to Serre's modularity conjecture, but in a more general context. This means I work with more complex Galois representations and this causes many intricacies and complications, and this is wherein most of my research lies. I further study other ingredients that also featured in Wiles' proof of Fermat's Last Theorem, in particular geometric objects called "Galois deformation rings". These rings are mathematical objects that carry information about Galois representations. Specifically, they tell you what happens when you take a Galois representation and try to alter it a bit. The geometry of such rings can be described in terms of so-called representation theory: this is a famous result called the Breuil-Mézard conjecture. Matthew Emerton and Toby Gee discovered it was possible to give a more precise description of this geometry of these rings. My work so far has the potential to further enhance Emerton and Gee's work.Building on my work to date, my proposal has three primary goals: (A) to make new advances in modular representation theory,(B) to prove a weight version of "weak" Serre implies "strong" Serre inspired by work of Fred Diamond and Shu Sasaki,(C) apply my work to refine the geometric Breuil-Mézard conjecture.
兰兰兹计划是当今数学研究中最引人注目的计划之一。它提出了代数,几何,数字理论和分析之间的深厚联系。迄今为止,该计划中最大的结果之一是安德鲁·威尔斯爵士(Andrew Wiles)爵士的最后定理证明,这引发了国家报纸的头条新闻。结果如下:让n成为大于2的整数,然后没有非零整数x,y和z,以使x^n + y^n = z^n。虽然这是一个相对可访问的陈述,但该结果的证明是在首次猜想的三个世纪以来出现的,并为其提供的努力导致了数字理论及以后的巨大创新。证明Fermat的最后一个定理的关键是数学对象之间的深厚连接称为模块化形式和椭圆曲线:模块化定理。我的工作与该理论密切相关的结果:Serre的模块化猜想。 Jean-Pierre Serre于1973年陈述,并于1987年进行了完善,实际上,Fermat的最后一个定理是其后果之一。 Fermat的最后定理中的方程式是用古希腊数学家毒理学命名的双志方程的一个例子。这些是具有整数系数的多项式方程,其解决方案也仅限于整数。求解双苯胺方程是数字理论的主要目标之一。尝试研究此类方程式的一种方法是研究Galois表示,即捕获双磷灰石方程对称的数学对象。 Serre发现可以通过查看模块化形式来研究此类表示,这些模块形式可以满足一些不错的对称属性。这称为Serre的模块化猜想的“弱”版本。 “强”版本描述了与任何给定的Galois表示相对应的模块化形式的属性。 Chandrashekhar Khare和Jean-Pierre Wintenberger最终证明了Serre的发现是正确的,这是许多其他数学家的作品。证明在很大程度上依赖于早期的工作表明“弱”版本意味着“强”版本。受凯文·巴扎德(Kevin Buzzard),弗雷德·戴蒙德(Fred Diamond)和弗雷泽·贾维斯(Frazer Jarvis)的作品的启发,我的目标是取得类似于塞尔(Serre)模块化概念的结果,但在更一般的情况下。这意味着我使用更复杂的Galois表示,这会导致许多复杂性和并发症,这就是我大多数研究所在。我进一步研究了威尔斯的最后一个定理证明,特别是几何对象,尤其是称为“ galois变形环”中的其他媒介。这些环是携带有关GALOIS表示的信息的数学对象。具体来说,他们告诉您当您进行Galois表示并尝试改变它时会发生什么。可以用所谓的表示理论来描述这种环的几何形状:这是一个名为Breuil-Mézard猜想的著名结果。 Matthew Emerton和Toby Gee发现,有可能对这些戒指的几何形状进行更精确的描述。到目前为止,我的工作有可能进一步增强艾默顿和吉的工作。迄今为止的工作,我的建议具有三个主要目标:(a)在模块化代表理论方面取得新的进步,(b)证明“弱” serre的重量版本暗示着“强烈”的“强”塞雷,这是受Fred Diamond and Shu Sasaki的启发而启发的,(c)将我的启发性地启发了我的启发。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Integrality of twisted $L$-values of elliptic curves
椭圆曲线扭曲$L$值的积分
- DOI:10.4171/dm/x25
- 发表时间:2022
- 期刊:
- 影响因子:0.9
- 作者:Wiersema H
- 通讯作者:Wiersema H
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hanneke Wiersema其他文献
Geometric modularity for algebraic and non-algebraic weights
代数和非代数权重的几何模块化
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Hanneke Wiersema - 通讯作者:
Hanneke Wiersema
Numerical Evidence for a refinement of Deligne's Period Conjecture for Jacobians of Curves
改进德利涅曲线雅可比行列式周期猜想的数值证据
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
R. Evans;Daniel Macias Castillo;Hanneke Wiersema - 通讯作者:
Hanneke Wiersema
On a BSD-type formula for L-values of Artin twists of elliptic curves
椭圆曲线Artin扭曲L值的BSD型公式
- DOI:
10.1515/crelle-2020-0036 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
V. Dokchitser;R. Evans;Hanneke Wiersema - 通讯作者:
Hanneke Wiersema
Real quadratic singular moduli and $p$-adic families of modular forms
实二次奇异模和模形式的$p$-adic族
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Paulina Fust;Judith Ludwig;A. Pozzi;Mafalda Santos;Hanneke Wiersema - 通讯作者:
Hanneke Wiersema
Irregular loci in the Emerton-Gee stack for GL_2
GL_2 的 Emerton-Gee 堆栈中的不规则位点
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Rebecca Bellovin;Neelima Borade;Anton B. Hilado;Kalyani Kansal;Heejong Lee;B. Levin;David Savitt;Hanneke Wiersema - 通讯作者:
Hanneke Wiersema
Hanneke Wiersema的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于随机信号自适应稀疏表示理论的数据加密算法研究
- 批准号:62306113
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多尺度自适应单纯复形表示学习的高阶链路预测理论与方法研究
- 批准号:62366030
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于李群状态表示的惯性基导航信息融合理论与方法研究
- 批准号:62373367
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
量子群和Schur代数的表示理论
- 批准号:12371032
- 批准年份:2023
- 资助金额:44.00 万元
- 项目类别:面上项目
分形谱测度的谱表示及其在维数理论中的应用
- 批准号:12301105
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
An application of mock modular forms to representation theory
模拟模块化形式在表示论中的应用
- 批准号:
23K19018 - 财政年份:2023
- 资助金额:
$ 38.97万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Sheaf-Theoretic Methods in Modular Representation Theory
模表示理论中的层理论方法
- 批准号:
2202012 - 财政年份:2022
- 资助金额:
$ 38.97万 - 项目类别:
Standard Grant
Modular Representation Theory and Categorification with Applications
模块化表示理论及其分类及其应用
- 批准号:
2101791 - 财政年份:2021
- 资助金额:
$ 38.97万 - 项目类别:
Standard Grant
Modular Lie algebras and representation theory
模李代数和表示论
- 批准号:
2281585 - 财政年份:2019
- 资助金额:
$ 38.97万 - 项目类别:
Studentship
The modular representation theory of combinatorics structures and its applications
组合结构的模表示理论及其应用
- 批准号:
18K03245 - 财政年份:2018
- 资助金额:
$ 38.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)