Research on the representations of cyclotomic Hecke algebras and finite algebraic groups of classical type

分圆Hecke代数和经典型有限代数群的表示研究

基本信息

  • 批准号:
    12640016
  • 负责人:
  • 金额:
    $ 0.9万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2000
  • 资助国家:
    日本
  • 起止时间:
    2000 至 2001
  • 项目状态:
    已结题

项目摘要

We have determined when a Hecke algebra has finite representation type. In classical types, the case where the Hecke algebra has type B is essential, and the result in this case is based on the theory which I explained in my book published in 2000, in the project term (Exceptional types were settled by Hyoue Miyachi)More precisely, using Morita equivalence theorem of Dipper and Mathas the proof is reduced to the case where a two-parameter Hecke algebra of type B has 1 and q^f as the parameters. Then we obtain certain decomposition numbers by the computation of some canonical basis elements. We combine this with Specht module theory and the theory of Artinian algebras. As a result we have a necessary and sufficient condition n<min (e, 2f+4, 2e-2f+4) where q is a primitive eth root of unity. Results for Hecke algebros of classical type are obtained as a Corollary of this result. Related to this project, I also published papers one on the result that λ : Kleshchev<->D^λ*0 the other on combinatorios and crystal.Moreover, I've completed the English translation of the book mentioned above. This will be published by the American Mathematical Society.
我们已经确定了Hecke代数何时具有有限的表示类型。 In classical types, the case where the Hecke algebra has type B is essential, and the result in this case is based on the theory which I explained in my book published in 2000, in the project term (Exceptional types were settled by Hyoue Miyachi)More precisely, using Morita equivalence theory of Dipper and Mathas the proof is reduced to the case where a two-parameter Hecke algebra of type B has 1 and q^f as参数。然后,我们通过计算某些规范基础元素来获得某些分解数。我们将其与Speccht模块理论和Artinian代数理论相结合。结果,我们有一个必要且充分的条件n <min(e,2f+4,2e-2f+4),其中q是统一的原始元根。获得经典类型的Hecke代数的结果是作为该结果的必然的。与这个项目相关,我还发表了一篇论文,其中一篇结果是λ:kleshchev <-> d^λ*0另一个在Combinatorios和Crystal上。此外,我已经完成了上述书的英文翻译。这将由美国数学学会出版。

项目成果

期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
S. Ariki: "Robinson-Schensted correspondence and left cells"Adv. Stud. Pure Math.. 28. 1-20 (2000)
S. Ariki:“Robinson-Schensted 通信和左细胞”Adv。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S.Ariki: "Some reworks on A^<(1)>_1 solution cellular automata"J. Math. Sci. Univ. Tokyo. 8. 143-156 (2001)
S.Ariki:“对 A^<(1)>_1 解元胞自动机的一些修改”J.
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S.Ariki: "Some remarkes on A_1^<(1)> soliton cellular automata"J. Math. Sci. Univ. Tokyo. 8. 143-156 (2001)
S.Ariki:“关于 A_1^<(1)> 孤子元胞自动机的一些评论”J。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S.Ariki, A.Mathas: "The number of simple modules of the Hecke algebias of type G(r.l.n)"Math. Zeit. 233. 601-623 (2000)
S.Ariki,A.Mathas:“G(r.l.n) 型 Hecke 代数的简单模数”数学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S.Ariki: "On the classification of simple modules for cyclotomic Hecke algebars of type G(m, l, n)"Osaka J. Math.. 38. 827-837 (2001)
S.Ariki:“关于 G(m, l, n) 型分圆 Hecke 代数的简单模的分类”Osaka J. Math.. 38. 827-837 (2001)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ARIKI Susumu其他文献

ARIKI Susumu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ARIKI Susumu', 18)}}的其他基金

Towards further development of the representation theory of cyclotomic Hecke algebras
迈向分圆赫克代数表示论的进一步发展
  • 批准号:
    20340004
  • 财政年份:
    2008
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Remark on modular representations of non-commutative algebraic systems
关于非交换代数系统的模表示的评述
  • 批准号:
    16540023
  • 财政年份:
    2004
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Representations of Hecke algebras
赫克代数的表示
  • 批准号:
    14540014
  • 财政年份:
    2002
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

Z分次表示理论
  • 批准号:
    11171021
  • 批准年份:
    2011
  • 资助金额:
    40.0 万元
  • 项目类别:
    面上项目

相似海外基金

Towards a Categorification of the Asymptotic Hecke Algebra
渐进赫克代数的分类
  • 批准号:
    534624-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Towards a Categorification of the Asymptotic Hecke Algebra
渐进赫克代数的分类
  • 批准号:
    534624-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Newform theory for the full space via local Shimura correspondence and Waldspurger-type theorem
通过局部 Shimura 对应和 Waldspurger 型定理的完整空间的新形式理论
  • 批准号:
    18K13396
  • 财政年份:
    2018
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Research on finite dimensional algebras and combinatorial objects that appear in Lie theory
李理论中出现的有限维代数和组合对象的研究
  • 批准号:
    18K03212
  • 财政年份:
    2018
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Unreasonable Effectiveness of the Affine Hecke Algebra
仿射赫克代数的不合理有效性
  • 批准号:
    1802378
  • 财政年份:
    2018
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了