Various Aspects of Topology

拓扑的各个方面

基本信息

  • 批准号:
    12304003
  • 负责人:
  • 金额:
    $ 31.17万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
  • 财政年份:
    2000
  • 资助国家:
    日本
  • 起止时间:
    2000 至 2002
  • 项目状态:
    已结题

项目摘要

Topology is the mathematics to study the position and the shape. The development of topology in the last decade was promoted by the interaction between the branches of topology as well as that between differential geometry, algebra, analysis, mathematical physics and topology. In this research, we wish to promote the development much more. We did the researches in the following fields : classifying theory of singularities of mappings and algebraic varieties, various group actions on manifolds and simplicial complexes, the action of the mapping class groups of the surfaces on their Teichmuller spaces, the dynamical study of complex analytic maps, the dynamical study of vector fields on manifolds and foliations, the classifying theory of hyperbolic 3 dimensional manifolds and hyperbolic spaces with singularities, the differentiable structures and symplectic structures on 4 dimensional manifolds, the conformal field theory and invariants of dimensional manifolds, the topology of the moduli spaces of connections of various principal bundles, the Poisson manifolds and contact manifolds, equivariant generalized (co)homology theories and homotopy theories, invariants of knots and links and their classification, general topology theory for wild spaces. These researches were done successfully with their own results. In order to promote the interaction between these researches we held "Topology Symposium" each year as well as many conferences on the above research fields. These are done as Topology Projects in the collaboration with researchers in topology in Japan. In particular, the series of the meetings "Encounter with Mathematics" were held in order to promote the interaction with researchers in other fields as well as graduate students. By these research activities, the direction of new development for the next project became clear.
拓扑学是研究位置和形状的数学。拓扑学各分支之间以及微分几何、代数、分析、数学物理和拓扑之间的相互作用促进了拓扑学近十年的发展。通过这项研究,我们希望能够进一步推动这一领域的发展。我们的研究领域包括:映射和代数簇的奇点分类理论、流形和单纯复形上的各种群作用、曲面的映射类群在其Teichmuller空间上的作用、复解析映射的动力学研究、流形和叶状向量场的动力学研究、双曲三维流形和奇点双曲空间的分类理论、可微结构和辛4维流形上的结构,共形场论和维流形不变量,各种主束连接的模空间拓扑,泊松流形和接触流形,等变广义(共)同调理论和同伦理论,结不变量和链接及其分类,野生空间的一般拓扑理论。这些研究都取得了成功,并取得了自己的成果。为了促进这些研究之间的互动,我们每年都会举办“拓扑研讨会”以及针对上述研究领域的许多会议。这些是与日本拓扑研究人员合作作为拓扑项目完成的。特别是,为了促进与其他领域研究人员以及研究生的互动,举办了“邂逅数学”系列会议。通过这些研究活动,下一个项目的新发展方向变得清晰起来。

项目成果

期刊论文数量(34)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M.Morimoto,T.Sumi and M.Yanagihara: "Finite groups possessing gap modules,"Geometry and Topology : Aarhus, Contemp.Math.. 258. 329-342 (2000)
M.Morimoto、T.Sumi 和 M.Yanagihara:“拥有间隙模的有限群”,几何与拓扑:奥尔胡斯,Contemp.Math.. 258. 329-342 (2000)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Shigenori Matsumoto, Hiromichi Nakayama: "On the Ruelle invariants for deffeomorphisms of the two torus"Ergod.Th.Dyanam.Sys.. 22. 1263-1267 (2002)
Shigenori Matsumoto、Hiromichi Nakayama:“论两个环面 defeomorphisms 的 Ruelle 不变量”Ergod.Th.Dyanam.Sys.. 22. 1263-1267 (2002)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Toshitake Kohno: "Vassiliev invariants of braids and iterated integrals"Advanced Studuies in Pure Math.. 27. 157-168 (2000)
Toshitake Kohno:“辫子的 Vassiliev 不变量和迭代积分”Advanced Studuies in Pure Math.. 27. 157-168 (2000)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Masaharu Morimoto: "The Burnside ring revisited"Current Trends in Transformation Groups, K-Monographs in Mathematics 7. 7. 129-145 (2002)
Masaharu Morimoto:“重温伯恩赛德环”当前转型群趋势,K-数学专着 7. 7. 129-145 (2002)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Shuichi Izumiya, Nobuko Takeuchi: "Singularities of ruled surfaces in R^3"Math. Proc. Camb. Phil. Soc.. 130. 1-11 (2001)
Shuichi Izumiya、Nobuko Takeuchi:“R^3 中直纹曲面的奇点”数学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TSUBOI Takashi其他文献

TSUBOI Takashi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TSUBOI Takashi', 18)}}的其他基金

Regulation of incretin secretion by microbiota metabolites
微生物代谢物调节肠促胰素分泌
  • 批准号:
    20H04121
  • 财政年份:
    2020
  • 资助金额:
    $ 31.17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Molecular mechanisms of gastrointestinal hormone secretion by intestinal bacterial metabolites
肠道细菌代谢产物分泌胃肠激素的分子机制
  • 批准号:
    17K08529
  • 财政年份:
    2017
  • 资助金额:
    $ 31.17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Molecular mechanisms of ghrelin secretion from endocrine cells
内分泌细胞分泌生长素释放肽的分子机制
  • 批准号:
    26460289
  • 财政年份:
    2014
  • 资助金额:
    $ 31.17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mechanisms of gliotransmitter release from astrocytes by imaging analysis
通过成像分析星形胶质细胞释放胶质递质的机制
  • 批准号:
    24790207
  • 财政年份:
    2012
  • 资助金额:
    $ 31.17万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Actions of infinite simple groups
无限简单群的行动
  • 批准号:
    24654011
  • 财政年份:
    2012
  • 资助金额:
    $ 31.17万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Study on the molecular mechanism of hormone secretion
激素分泌的分子机制研究
  • 批准号:
    21790197
  • 财政年份:
    2009
  • 资助金额:
    $ 31.17万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Geometric study on infinite simple groups
无限简单群的几何研究
  • 批准号:
    21654009
  • 财政年份:
    2009
  • 资助金额:
    $ 31.17万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Groups of diffeomorphisms of manifolds
流形微分同胚群
  • 批准号:
    20244003
  • 财政年份:
    2008
  • 资助金额:
    $ 31.17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Molecular mechanisms of hormone release revealed by live cell imaging analysis
活细胞成像分析揭示激素释放的分子机制
  • 批准号:
    18689008
  • 财政年份:
    2006
  • 资助金额:
    $ 31.17万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
Various aspects of infinite groups of transformations acting on manifolds
作用于流形上的无限变换群的各个方面
  • 批准号:
    16204004
  • 财政年份:
    2004
  • 资助金额:
    $ 31.17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)

相似国自然基金

瞬态高温环境下力学承载-防隔热一体化结构拓扑优化方法研究
  • 批准号:
    12302148
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
随机非线性复杂系统的拓扑结构及其在交叉学科中的应用
  • 批准号:
    12375034
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
碳的拓扑物性与晶体结构关系的理论研究
  • 批准号:
    12304087
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于expander方法的三类图结构(拓扑子式、浸入、图子式)嵌入问题研究
  • 批准号:
    12301447
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于木质纳米纤维素基元的仿生拓扑结构Si3N4陶瓷的多尺度序构及强韧化机制
  • 批准号:
    52372068
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Conference: St. Louis Topology Conference: Flows and Foliations in 3-Manifolds
会议:圣路易斯拓扑会议:3 流形中的流动和叶理
  • 批准号:
    2350309
  • 财政年份:
    2024
  • 资助金额:
    $ 31.17万
  • 项目类别:
    Standard Grant
Complementary study on dynamical systems and foliations using methods of partially ordered set and general topology
使用偏序集和一般拓扑方法对动力系统和叶状结构进行补充研究
  • 批准号:
    20K03583
  • 财政年份:
    2020
  • 资助金额:
    $ 31.17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Taut Foliations and Contact Topology
合作研究:张紧的叶状结构和接触拓扑
  • 批准号:
    1612475
  • 财政年份:
    2016
  • 资助金额:
    $ 31.17万
  • 项目类别:
    Continuing Grant
Collaborative Research: Taut foliations and contact topology
合作研究:拉紧的叶状结构和接触拓扑
  • 批准号:
    1612036
  • 财政年份:
    2016
  • 资助金额:
    $ 31.17万
  • 项目类别:
    Continuing Grant
A research on Thurston's inequality for foliations and contact topology
叶状结构和接触拓扑瑟斯顿不等式的研究
  • 批准号:
    23540106
  • 财政年份:
    2011
  • 资助金额:
    $ 31.17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了