Research on automorphic representations

自守表示研究

基本信息

  • 批准号:
    06402001
  • 负责人:
  • 金额:
    $ 7.55万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
  • 财政年份:
    1994
  • 资助国家:
    日本
  • 起止时间:
    1994 至 1996
  • 项目状态:
    已结题

项目摘要

H.Yoshida studied periods of Hilbert modular forms and proved Shimura's conjectures on P,Q-invariants. He also studied the derivatives of Artin's L-functions at s=0 and found a relation with periods of abelian varieties with complex multiplication. This relation can be sharpened by the notion of "absolute CM-periods".T.Ikeda studied residues of Eisenstein series and proved a Siegel-Weil type formula when Eisenstein series does not converge.K.Hiraga studied the multiplicity of a discrete series representation with which it occurs in L^2 (GAMMA/G), where G is a semisimple Lie group and GAMMA is a discrete subgroup.T.Umeda studied the notion of dual reductive pair in the case of quatum groups ; he generalized Capelli type identities for this case.H.Hijikata conjectured an approximation theorem for semisimple algebras over the quotient field of a Dedekind domain ; related with this conjecture, he obtained many results on orders and lattices.
H. Yoshida研究了希尔伯特模块化形式的时期,并证明了Shimura在P,Q-Invariants上的猜想。他还研究了S = 0的Artin L功能的衍生物,并发现了与带有复杂乘法的Abelian品种时期的关系。可以通过“绝对cm periods”的概念来提高这种关系。离散子组t.umeda研究了quatum组的双重还原对的概念。他对这种情况进行了广泛的capelli类型身份。与这个猜想有关,他在订单和格子上获得了许多结果。

项目成果

期刊论文数量(30)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
H.Hijikata: "On-the decemposilion of lattices over orders" Journal of Math.Soc.Japan. 49-3(発表予定).
H. Hijikata:“On-the deemposilion oflattice over order”Journal of Math.Soc.Japan 49-3(待出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H. Yoshida: "On a conjecture of Shimura concrning periods of Hilbcrt modular farms" Amer, J. Math.117. 1019-1038 (1995)
H. Yoshida:“关于 Shimura 关于 Hilbcrt 模块化农场时期的猜想”Amer,J. Math.117。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H. Yoshida: "On calculations of zeros of various L-funcrtions" Journal of Mathematics of Kyoto University. 35. 663-696 (1995)
H. Yoshida:“关于各种 L 函数的零点的计算”京都大学数学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Takeshi Hirai: "Representations of Diffeomorphism groups and the intinite symmetric group" Noncompact Lie groups and some of their applications(Kluwer). 225-237 (1994)
Takeshi Hirai:“微分同胚群和无限对称群的表示”非紧李群及其一些应用(Kluwer)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Tamotsu Ikeda: "On the theory of Jacobi forms and Fourier-Jacobi coefficients of Eisenstem serie" Journal of Mathematics of Kyoto University. 34. 615-636 (1994)
池田保:“论Eisenstem系列的雅可比形式和傅里叶-雅可比系数的理论”京都大学数学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YOSHIDA Hiroyuki其他文献

YOSHIDA Hiroyuki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YOSHIDA Hiroyuki', 18)}}的其他基金

Photonic Properties of Liquid Crystal Blue Phases and their Application to Photonic Devices
液晶蓝相的光子特性及其在光子器件中的应用
  • 批准号:
    21860054
  • 财政年份:
    2009
  • 资助金额:
    $ 7.55万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Research on the derivative of L-functions and automorphic forms
L-函数的导数和自守形式的研究
  • 批准号:
    21540014
  • 财政年份:
    2009
  • 资助金额:
    $ 7.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Elucidation of the mechanism of ovarian cancer metastasis
阐明卵巢癌转移机制
  • 批准号:
    19791160
  • 财政年份:
    2007
  • 资助金额:
    $ 7.55万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Development of New Chitin Continuous Producing Method from Crab Shell Using Sub-critical Water Treatment
亚临界水处理蟹壳连续生产甲壳素新方法的开发
  • 批准号:
    18360437
  • 财政年份:
    2006
  • 资助金额:
    $ 7.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Research on periods, L-functions and automorphic forms
周期、L-函数和自守形式的研究
  • 批准号:
    16340006
  • 财政年份:
    2004
  • 资助金额:
    $ 7.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Conversion to Biodegradable Polylactic Acid and High Speed Methane Fermentation of Paper Manufacture Sludge with Sub-Critical Water Treatment
亚临界水处理造纸污泥转化为可生物降解聚乳酸和高速甲烷发酵
  • 批准号:
    13480180
  • 财政年份:
    2001
  • 资助金额:
    $ 7.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Research on special values and zeros of L-funcions and on automorphic forms
L-函数的特殊值和零点以及自守形式的研究
  • 批准号:
    13440007
  • 财政年份:
    2001
  • 资助金额:
    $ 7.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Conversion of waste fish meat to bio-degradable plastics poly lactic acid by sub-critcal water oxidation
亚临界水氧化将废鱼肉转化为可生物降解塑料聚乳酸
  • 批准号:
    10480147
  • 财政年份:
    1998
  • 资助金额:
    $ 7.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).
Zero Emissions by Forming Networks among Various Production Processes in Different Types of Industries
通过在不同类型行业的各个生产过程之间形成网络来实现零排放
  • 批准号:
    09247107
  • 财政年份:
    1997
  • 资助金额:
    $ 7.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas (A)
DEVELOPMENT OF COMPOSITE OF CHITOSAN AND DEXTRAN FOR SEPARATION OF PROTEINS AND ITS APPLICATION FOR INDUSTRIAL LARGE SCALE PROTEIN SEPARATION
壳聚糖与右旋糖酐复合蛋白质分离材料的研制及其在工业化大规模蛋白质分离中的应用
  • 批准号:
    07650926
  • 财政年份:
    1995
  • 资助金额:
    $ 7.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313151
  • 财政年份:
    2023
  • 资助金额:
    $ 7.55万
  • 项目类别:
    Continuing Grant
Geometric Representations of the Elliptic Quantum Toroidal Algebras
椭圆量子环形代数的几何表示
  • 批准号:
    23K03029
  • 财政年份:
    2023
  • 资助金额:
    $ 7.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313149
  • 财政年份:
    2023
  • 资助金额:
    $ 7.55万
  • 项目类别:
    Continuing Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313150
  • 财政年份:
    2023
  • 资助金额:
    $ 7.55万
  • 项目类别:
    Continuing Grant
A study on the homology group of symplectic derivation Lie algebras
辛导李代数同调群的研究
  • 批准号:
    22KJ0912
  • 财政年份:
    2023
  • 资助金额:
    $ 7.55万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了