Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
基本信息
- 批准号:2313150
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The quest to build intelligent machines capable of sensing, understanding and acting in their environment presents one of the great scientific challenges of our time. Despite recent advances in artificial intelligence (AI), the realization of robust, autonomous vision systems that understand and interact with the physical world remains elusive. Mathematically, vision requires understanding the relationships among an immense variety of object shapes, each subject to an immense variety of geometric and lighting transformations, leading to an explosion of possible visual scenes. This project aims to break through this barrier by developing a mathematically grounded computational theory of vision that will enable a new class of neural network learning algorithms to parse visual scenes into their constituent objects and transformations, thereby enabling computers to better represent the world around them. The results and computational tools arising from this research will be disseminated to the scientific community and general public through courses, seminars, hackathons, and open-source software contributed to the Geomstats library.The premise of this project is that the current limitations of AI and computer vision can be addressed with an appropriate mathematical framework, Lie theory, that models the hierarchical structure of natural transformations in the visual world. The investigators will develop generalizations of foundational signal processing transforms through explicit Lie group operations encoded in learnable G-Modules (Group-Modules). These modules directly tackle the combinatoric explosion in vision by factorizing images into shapes and their underlying transformations. Specifically, the team will develop G-modules that learn group-equivariant representations of the transformations contained in natural images (Aim 1), robust representations of shape by collapsing group orbits only with respect to specific transformations (Aim 2), and disentangling of transformation and shape via factorization (Aim 3). The modules are assembled into hierarchical architectures that can learn complex representations of transformations and shapes (Aim 4). Together, these aims provide a new paradigm that grounds existing models of vision and gives a set of guiding principles for the design of future deep learning architectures with enhanced abilities to sense and understand the world.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
寻求构建能够在其环境中感知、理解和行动的智能机器是我们这个时代面临的巨大科学挑战之一。尽管人工智能 (AI) 最近取得了进展,但实现理解物理世界并与物理世界交互的强大自主视觉系统仍然难以实现。从数学上讲,视觉需要理解各种各样的物体形状之间的关系,每个物体形状都会经历各种各样的几何和照明变换,从而导致可能的视觉场景的爆炸。该项目旨在通过开发一种以数学为基础的视觉计算理论来突破这一障碍,该理论将使新型神经网络学习算法能够将视觉场景解析为其组成对象和变换,从而使计算机能够更好地表示周围的世界。这项研究的结果和计算工具将通过课程、研讨会、黑客马拉松和为 Geomstats 库贡献的开源软件向科学界和公众传播。该项目的前提是,当前人工智能和人工智能的局限性计算机视觉可以通过适当的数学框架(李理论)来解决,该框架模拟视觉世界中自然变换的层次结构。 研究人员将通过在可学习的 G 模块(组模块)中编码的显式李群运算来开发基础信号处理变换的概括。 这些模块通过将图像分解为形状及其底层转换来直接解决视觉中的组合爆炸问题。 具体来说,该团队将开发 G 模块,学习自然图像中包含的变换的群等变表示(目标 1)、通过仅针对特定变换折叠群轨道来实现稳健的形状表示(目标 2)以及变换的解开并通过因式分解形成形状(目标 3)。这些模块被组装成分层架构,可以学习变换和形状的复杂表示(目标 4)。这些目标共同提供了一个新的范式,为现有的视觉模型奠定了基础,并为未来深度学习架构的设计提供了一套指导原则,增强了感知和理解世界的能力。该奖项反映了 NSF 的法定使命,并被认为是值得的通过使用基金会的智力优势和更广泛的影响审查标准进行评估来获得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nina Miolane其他文献
An efficient algorithm for the Riemannian logarithm on the Stiefel manifold for a family of Riemannian metrics
黎曼度量族 Stiefel 流形上黎曼对数的有效算法
- DOI:
10.48550/arxiv.2403.11730 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Simon Mataigne;Ralf Zimmermann;Nina Miolane - 通讯作者:
Nina Miolane
Not so griddy: Internal representations of RNNs path integrating more than one agent
不那么网格化:集成多个代理的 RNN 路径的内部表示
- DOI:
10.1101/2024.05.29.596500 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
William T. Redman;Francisco Acosta;Santiago Acosta;Nina Miolane - 通讯作者:
Nina Miolane
Heterogeneous reconstruction of deformable atomic models in Cryo-EM
冷冻电镜中可变形原子模型的异质重建
- DOI:
10.48550/arxiv.2209.15121 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Y. Nashed;A. Peck;Julien N. P. Martel;A. Levy;Bongjin Koo;Gordon Wetzstein;Nina Miolane;D. Ratner;F. Poitevin - 通讯作者:
F. Poitevin
Barron’s Theorem for Equivariant Networks
等变网络的巴伦定理
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Hannah Lawrence;S. Sanborn;Christian Shewmake;Simone Azeglio;Arianna Di Bernardo;Nina Miolane - 通讯作者:
Nina Miolane
Topologically Constrained Template Estimation via Morse-Smale Complexes Controls Its Statistical Consistency
通过 Morse-Smale 复合体的拓扑约束模板估计控制其统计一致性
- DOI:
10.1137/17m1129222 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Nina Miolane;S. Holmes;X. Pennec - 通讯作者:
X. Pennec
Nina Miolane的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nina Miolane', 18)}}的其他基金
CAREER: Advancing Shape Learning for Biosciences
职业:推进生物科学的形状学习
- 批准号:
2240158 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: A Unifying Deep Learning Framework Using Cell Complex Neural Networks
协作研究:使用细胞复杂神经网络的统一深度学习框架
- 批准号:
2134241 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
跨膜蛋白LRP5胞外域调控膜受体TβRI促钛表面BMSCs归巢、分化的研究
- 批准号:82301120
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Dectin-2通过促进FcεRI聚集和肥大细胞活化加剧哮喘发作的机制研究
- 批准号:82300022
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
藏药甘肃蚤缀β-咔啉生物碱类TβRI抑制剂的发现及其抗肺纤维化作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
TβRI的UFM化修饰调控TGF-β信号通路和乳腺癌转移的作用及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
AKAP3通过其Dual和RI结构域整合多重信号通路调控精子活力和男性育性的机理研究
- 批准号:82171602
- 批准年份:2021
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312841 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312842 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: Foundations of Few-Round Active Learning
协作研究:RI:小型:少轮主动学习的基础
- 批准号:
2313131 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313151 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312840 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant