Collaborative Research: A Unifying Deep Learning Framework Using Cell Complex Neural Networks

协作研究:使用细胞复杂神经网络的统一深度学习框架

基本信息

  • 批准号:
    2134241
  • 负责人:
  • 金额:
    $ 33.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-12-01 至 2024-11-30
  • 项目状态:
    已结题

项目摘要

Deep learning has fostered the development of many new technologies, ranging from automatic medical image analysis to document translation powered by artificial intelligence. These societal transformations originated with rapid advancements in the fields of computer vision and natural language processing, that is, the processing of images and texts. Yet, a wide range of data is not best represented by a grid of pixels or a sequence of words. For example, (biomolecular) shapes or (social) networks are data types exhibiting local and global geometric properties that might not be efficiently leveraged by existing deep learning architectures. Hence, there is a need to rigorously understand and expand the data types to which deep learning methods can be applied. This research project considers the more abstract "cell complex" data type. The work introduces and aims to quantify the potential of "cell complex networks" in deep learning. Applications range from computational biology and medicine, social science, and art, to a better understanding of deep learning itself. The project will disseminate these ideas through publications and the release of open-source software, demonstration material, and datasets. The results are expected to enhance existing ties between deep learning and other fields that rely on geometric, topological, and combinatorial objects. The needs of diverse machine learning communities will be addressed by carefully choosing publication venues. Research training will be provided to undergraduate and graduate students, where the recruiting process will encourage applications from underrepresented groups. Pair-programming sessions, together with occasional hackathons, will help train the next generation of practitioners in topological and geometric deep learning, complementing their theoretical training with pivotal software engineering practices. This project will also facilitate outreach through public lectures featuring speakers from diverse backgrounds.This research aims to develop a unifying mathematical framework where deep learning models and protocols can be universally defined and executed over cell complex domains. Such domains generalize discrete domains of practical importance such as graphs, point clouds, meshes, and simplicial complexes. The project first unifies existing deep learning computational blocks into the framework of cell complex neural networks (CXNs). The investigators plan to rigorously construct the necessary tools of neural network computational primitives over domains that have geometric, topological, and combinatorial characteristics. They will investigate important theoretical questions associated to these models, such as generalizability and expressiveness in the light of metrics specifically defined for CXNs. Second, the project will harness the power of deep learning in answering questions that arise when studying data with such topological and combinatorial structures. The project will provide benchmarks for graph, point cloud, and mesh data types, leveraging both simulated and real datasets. The investigators will develop an open-source Python package that gathers the topological and combinatorial deep learning primitives with an interface allowing study of their theoretical properties. Third, the project will apply these tools to the understanding of deep learning itself. The work will leverage CXNs to extract geometric and topological summaries of the sequence of weight iterates generated during the training of a given network. The investigators will connect these summaries to the generalizability of the deep learning algorithm and architecture at hand.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
深度学习促进了许多新技术的发展,从自动医学图像分析到人工智能驱动的文档翻译。这些社会变革源于计算机视觉和自然语言处理(即图像和文本处理)领域的快速进步。然而,广泛的数据并不能最好地用像素网格或单词序列来表示。例如,(生物分子)形状或(社交)网络是表现出局部和全局几何特性的数据类型,现有的深度学习架构可能无法有效利用这些特性。因此,需要严格理解和扩展深度学习方法可以应用的数据类型。该研究项目考虑更抽象的“单元复杂”数据类型。这项工作介绍并旨在量化“细胞复杂网络”在深度学习中的潜力。应用范围从计算生物学和医学、社会科学和艺术,到更好地理解深度学习本身。该项目将通过出版物和开源软件、演示材料和数据集的发布来传播这些想法。研究结果预计将增强深度学习与依赖几何、拓扑和组合对象的其他领域之间的现有联系。通过仔细选择出版地点,可以满足不同机器学习社区的需求。将为本科生和研究生提供研究培训,招聘过程将鼓励代表性不足的群体提出申请。结对编程课程以及偶尔的黑客马拉松将有助于培训下一代拓扑和几何深度学习从业者,并通过关键的软件工程实践补充他们的理论培训。该项目还将通过由不同背景的演讲者参加的公开讲座来促进推广。这项研究旨在开发一个统一的数学框架,在该框架中深度学习模型和协议可以在细胞复杂领域得到普遍定义和执行。这些域概括了具有实际重要性的离散域,例如图、点云、网格和单纯复形。该项目首先将现有的深度学习计算模块统一到细胞复杂神经网络(CXN)的框架中。研究人员计划在具有几何、拓扑和组合特征的域上严格构建神经网络计算原语的必要工具。他们将研究与这些模型相关的重要理论问题,例如根据专门为 CXN 定义的指标的普遍性和表达性。其次,该项目将利用深度学习的力量来回答在研究具有此类拓扑和组合结构的数据时出现的问题。该项目将利用模拟和真实数据集,为图形、点云和网格数据类型提供基准。研究人员将开发一个开源 Python 包,该包收集拓扑和组合深度学习原语,并提供一个允许研究其理论属性的界面。第三,该项目将应用这些工具来理解深度学习本身。这项工作将利用 CXN 来提取给定网络训练期间生成的权重迭代序列的几何和拓扑摘要。研究人员将这些总结与现有深度学习算法和架构的普遍性联系起来。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Architectures of Topological Deep Learning: A Survey on Topological Neural Networks
  • DOI:
    10.48550/arxiv.2304.10031
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mathilde Papillon;S. Sanborn;Mustafa Hajij;Nina Miolane
  • 通讯作者:
    Mathilde Papillon;S. Sanborn;Mustafa Hajij;Nina Miolane
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nina Miolane其他文献

An efficient algorithm for the Riemannian logarithm on the Stiefel manifold for a family of Riemannian metrics
黎曼度量族 Stiefel 流形上黎曼对数的有效算法
  • DOI:
    10.48550/arxiv.2403.11730
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Simon Mataigne;Ralf Zimmermann;Nina Miolane
  • 通讯作者:
    Nina Miolane
Not so griddy: Internal representations of RNNs path integrating more than one agent
不那么网格化:集成多个代理的 RNN 路径的内部表示
  • DOI:
    10.1101/2024.05.29.596500
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    William T. Redman;Francisco Acosta;Santiago Acosta;Nina Miolane
  • 通讯作者:
    Nina Miolane
Heterogeneous reconstruction of deformable atomic models in Cryo-EM
冷冻电镜中可变形原子模型的异质重建
  • DOI:
    10.48550/arxiv.2209.15121
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y. Nashed;A. Peck;Julien N. P. Martel;A. Levy;Bongjin Koo;Gordon Wetzstein;Nina Miolane;D. Ratner;F. Poitevin
  • 通讯作者:
    F. Poitevin
Barron’s Theorem for Equivariant Networks
等变网络的巴伦定理
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hannah Lawrence;S. Sanborn;Christian Shewmake;Simone Azeglio;Arianna Di Bernardo;Nina Miolane
  • 通讯作者:
    Nina Miolane
Topologically Constrained Template Estimation via Morse-Smale Complexes Controls Its Statistical Consistency
通过 Morse-Smale 复合体的拓扑约束模板估计控制其统计一致性
  • DOI:
    10.1137/17m1129222
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nina Miolane;S. Holmes;X. Pennec
  • 通讯作者:
    X. Pennec

Nina Miolane的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nina Miolane', 18)}}的其他基金

CAREER: Advancing Shape Learning for Biosciences
职业:推进生物科学的形状学习
  • 批准号:
    2240158
  • 财政年份:
    2023
  • 资助金额:
    $ 33.48万
  • 项目类别:
    Continuing Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313150
  • 财政年份:
    2023
  • 资助金额:
    $ 33.48万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于凸优化的相控阵-天线罩系统一体化方向图高效综合方法研究
  • 批准号:
    62301379
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
轨道车辆典型焊接结构复合型裂纹扩展机理及统一描述方法研究
  • 批准号:
    52375159
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
日侧极盖区极光统一模型相关科学问题研究
  • 批准号:
    42374191
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
城市轨道交通高性能大功率能源路由器统一建模及调控方法研究
  • 批准号:
    52377088
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向高阶谐振网络与复杂调制方式的谐振变换器统一多频率小信号建模理论研究
  • 批准号:
    52307196
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: A Unifying Deep Learning Framework Using Cell Complex Neural Networks
协作研究:使用细胞复杂神经网络的统一深度学习框架
  • 批准号:
    2323062
  • 财政年份:
    2023
  • 资助金额:
    $ 33.48万
  • 项目类别:
    Standard Grant
Collaborative Research: SWIFT-SAT: RFI Detection Across Six Orders of Magnitude in Intensity: A Unifying Framework with Weakly Supervised Machine Learning
合作研究:SWIFT-SAT:强度六个数量级的 RFI 检测:弱监督机器学习的统一框架
  • 批准号:
    2228990
  • 财政年份:
    2022
  • 资助金额:
    $ 33.48万
  • 项目类别:
    Standard Grant
Collaborative Research: SWIFT-SAT: RFI Detection Across Six Orders of Magnitude in Intensity: A Unifying Framework with Weakly Supervised Machine Learning
合作研究:SWIFT-SAT:强度六个数量级的 RFI 检测:弱监督机器学习的统一框架
  • 批准号:
    2228989
  • 财政年份:
    2022
  • 资助金额:
    $ 33.48万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: LARGE: Unifying Software and Hardware to Achieve Performant and Scalable Frictionless Parallelism in the Heterogeneous Future
合作研究:PPoSS:大型:统一软件和硬件,在异构未来实现高性能和可扩展的无摩擦并行
  • 批准号:
    2119069
  • 财政年份:
    2021
  • 资助金额:
    $ 33.48万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Unifying Software and Hardware to Achieve Performant and Scalable Frictionless Parallelism in the Heterogeneous Future
合作研究:PPoSS:大型:统一软件和硬件,在异构未来实现高性能和可扩展的无摩擦并行
  • 批准号:
    2119352
  • 财政年份:
    2021
  • 资助金额:
    $ 33.48万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了