CAREER: Advancing Shape Learning for Biosciences

职业:推进生物科学的形状学习

基本信息

  • 批准号:
    2240158
  • 负责人:
  • 金额:
    $ 49.64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2028-08-31
  • 项目状态:
    未结题

项目摘要

Understanding the healthy and pathological shapes of biological structures (proteins, cells, organs) directly from image data is critical to understand their roles in living organisms. The impact for human health and society range from our understanding of cancers to the diagnosis of neurodegenerative diseases. This CAREER proposal will evaluate and develop reliable shape analysis methods that can harness the recent bio-imaging data explosion, advance our understanding of the fundamental rules of life, and enable breakthroughs in data-driven biomedicine. Tightly integrated with the research activities, the education and outreach objective is to engage diverse audiences in shape analysis and bioscience through novel art-science performances for high-school students, pioneering courses on geometric machine learning for shape analysis, training of graduate students, and free community outreach lectures for the wide audience.Despite impressive advances in the field of shape analysis, its deployment to biosciences is prohibited by computational and statistical hurdles. This yields challenges related to the interpretation of results, where inconsistent analyses bear the danger of driving scientific conclusions in the wrong direction —a serious drawback for a discipline that ultimately researches human health. In mathematics, (biological) shapes can be represented as shapes of key points, shapes of curves, or shapes of surfaces. The associated shape data spaces present common abstract geometric structures of non-Euclidean manifolds. This project will utilize these commonalities to establish a consistent numerical framework to systematically and exhaustively evaluate the possible inconsistencies of machine learning algorithms on shape spaces. In particular, it will provide a deep dive into the geodesic and polynomial regression models on non-Euclidean manifolds. The findings will be leveraged into a pilot study that will reliably extract biologically relevant parameters on the morphodynamics of cells migrating in vivo.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
了解生物结构的健康和病理形状(蛋白质,细胞,器官)以及对人类健康和社会的影响,从我们对癌症的理解到诊断神经化的诊断,该职业将评估分析方法。数据漏洞与研究紧密地融合在一起,通过新颖的艺术科学研究,对形状分析和生物科学进行了多样化,尽管令人印象深刻的是,但对研究生的培训在形状分析的领域中,他与结果的解释相关的是,不一致的分析是朝着方向推动科学结论的危险 - 这是对最终人类健康的学科的严重缺点形状数据空间呈现非欧盟歧管的常见抽象几何结构。研究结果将其定为一项试验性研究,该研究对细胞的形态动力学有意义的参数。这一奖项反映了NSF的表现,并且值得使用Toundation IT和更广泛的影响评估标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nina Miolane其他文献

An efficient algorithm for the Riemannian logarithm on the Stiefel manifold for a family of Riemannian metrics
黎曼度量族 Stiefel 流形上黎曼对数的有效算法
  • DOI:
    10.48550/arxiv.2403.11730
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Simon Mataigne;Ralf Zimmermann;Nina Miolane
  • 通讯作者:
    Nina Miolane
Not so griddy: Internal representations of RNNs path integrating more than one agent
不那么网格化:集成多个代理的 RNN 路径的内部表示
  • DOI:
    10.1101/2024.05.29.596500
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    William T. Redman;Francisco Acosta;Santiago Acosta;Nina Miolane
  • 通讯作者:
    Nina Miolane
Heterogeneous reconstruction of deformable atomic models in Cryo-EM
冷冻电镜中可变形原子模型的异质重建
  • DOI:
    10.48550/arxiv.2209.15121
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y. Nashed;A. Peck;Julien N. P. Martel;A. Levy;Bongjin Koo;Gordon Wetzstein;Nina Miolane;D. Ratner;F. Poitevin
  • 通讯作者:
    F. Poitevin
Barron’s Theorem for Equivariant Networks
等变网络的巴伦定理
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hannah Lawrence;S. Sanborn;Christian Shewmake;Simone Azeglio;Arianna Di Bernardo;Nina Miolane
  • 通讯作者:
    Nina Miolane
Topologically Constrained Template Estimation via Morse-Smale Complexes Controls Its Statistical Consistency
通过 Morse-Smale 复合体的拓扑约束模板估计控制其统计一致性
  • DOI:
    10.1137/17m1129222
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nina Miolane;S. Holmes;X. Pennec
  • 通讯作者:
    X. Pennec

Nina Miolane的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nina Miolane', 18)}}的其他基金

Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313150
  • 财政年份:
    2023
  • 资助金额:
    $ 49.64万
  • 项目类别:
    Continuing Grant
Collaborative Research: A Unifying Deep Learning Framework Using Cell Complex Neural Networks
协作研究:使用细胞复杂神经网络的统一深度学习框架
  • 批准号:
    2134241
  • 财政年份:
    2021
  • 资助金额:
    $ 49.64万
  • 项目类别:
    Standard Grant

相似国自然基金

果蝇幼虫前进运动发起的神经机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
机器人鸟“前进”运动控制神经信息传导通路及反馈研究
  • 批准号:
    61903230
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
内蒙古中东部毛登-前进场早石炭世强过铝花岗岩带地球化学成因及其构造意义
  • 批准号:
    41702054
  • 批准年份:
    2017
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
搅拌摩擦焊接过程前进阻力周期脉动振荡行为及调控研究
  • 批准号:
    51675248
  • 批准年份:
    2016
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
高前进比大反流区对旋翼操纵响应的作用机理及影响规律研究
  • 批准号:
    51505216
  • 批准年份:
    2015
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

ALPACA - Advancing the Long-range Prediction, Attribution, and forecast Calibration of AMOC and its climate impacts
APACA - 推进 AMOC 及其气候影响的长期预测、归因和预报校准
  • 批准号:
    2406511
  • 财政年份:
    2024
  • 资助金额:
    $ 49.64万
  • 项目类别:
    Standard Grant
Planning: Advancing Discovery on a Sustainable National Research Enterprise
规划:推进可持续国家研究企业的发现
  • 批准号:
    2412406
  • 财政年份:
    2024
  • 资助金额:
    $ 49.64万
  • 项目类别:
    Standard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
  • 批准号:
    2414607
  • 财政年份:
    2024
  • 资助金额:
    $ 49.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342498
  • 财政年份:
    2024
  • 资助金额:
    $ 49.64万
  • 项目类别:
    Standard Grant
HSI Implementation and Evaluation Project: Green Chemistry: Advancing Equity, Relevance, and Environmental Justice
HSI 实施和评估项目:绿色化学:促进公平、相关性和环境正义
  • 批准号:
    2345355
  • 财政年份:
    2024
  • 资助金额:
    $ 49.64万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了