Research on special values and zeros of L-funcions and on automorphic forms
L-函数的特殊值和零点以及自守形式的研究
基本信息
- 批准号:13440007
- 负责人:
- 金额:$ 7.49万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Yoshida studied various problems centered around the absolute CM-period. Also he found a direct method to obtain cohomology classes from automorphic forms of a wide class, by decomposing the integral of Eichler-Shimura type. He organized his research results in a book, which was published by American Mathematical Society. He studied a p-adic analogue of the absolute CM-period, in collaboration with Ph. D student Tomokazu Kashio. There are strong evidences that a p-adic analogue holds in a perfect manner. A few years ago, Ikeda constructed a lifing from elliptic modular forms to Siegel modular forms of several variables. Taking as the kernel function the restriction to the diagonal of this lifting, he constructed a new lifing, which contains Miyawaki's lifting as a apecial case.. He formulated a conjecture which relates the nonvanishing of this lifting to special values of certain L-functions. Hiraga formulated a conjecture which relates the Zelevinskii involution and A-packet conjectured by Arthur. As an evidence, he proved the commutativity of endoscopic lifts and the Zelevinskii involution. He further studied Arthur's conjecture 'on automorphic representations. Umeda studied three problems on the center of the univeral enveloping algebra of a Lie algebra of classical type, namely concrete description of generating system, relations to the other generating system and explicit representations of a generation system. These problems originated from the Capelli identity which is the identity of invariant differential operators. Fujiwara studied Leopoldt's conjecture using the Taylor-Wiles-Fujiwara theory and arrived at the new point of view that number. fields and hyperbolic manifolds are analogous. Fujii studied on the Montgomery conjecture on the pair correlations of zeros, the Montgomery sum and higher 'moments of the argument of the Riemann zeta function.
吉田研究了围绕绝对CM周期的各种问题。他还发现了一种直接方法,通过分解 Eichler-Shimura 型积分,从宽类的自守形式中获得上同调类。他将自己的研究成果整理成书,由美国数学会出版。他与博士生 Tomokazu Kashio 合作,研究了绝对 CM 周期的 p-adic 类似物。有强有力的证据表明 p 进类似物以完美的方式成立。几年前,池田构建了从椭圆模形式到多个变量的西格尔模形式的生命周期。以这种提升对角线的限制为核函数,他构造了一种新的升维,其中包含宫胁提升作为特殊情况。他提出了一个猜想,将这种提升的不为零与某些 L 函数的特殊值联系起来。平贺提出了一个猜想,将 Zelevinskii 对合和 Arthur 猜想的 A 包联系起来。作为证据,他证明了内窥镜升降机和 Zelevinskii 对合的交换律。他进一步研究了亚瑟的“自守表征猜想”。梅田研究了经典型李代数的普遍包络代数中心的三个问题,即生成系统的具体描述、与其他生成系统的关系以及生成系统的显式表示。这些问题源于卡佩利恒等式,即不变微分算子的恒等式。藤原利用泰勒-怀尔斯-藤原理论研究了利奥波德猜想,得出了新的观点:数字。域和双曲流形是类似的。藤井研究了关于黎曼 zeta 函数论证的零点对、蒙哥马利和和高矩的蒙哥马利猜想。
项目成果
期刊论文数量(56)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Akio Fujii: "On the pair correlation of the zeros of the Riemann zetu function"Analytic number theory (published by Klywer). 127-142 (2002)
Akio Fujii:“论黎曼zetu函数零点的成对相关性”解析数论(Klywer出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hiroyuki Yashida: "Absolute CM-periods"American Mathmutical Society. (2003)
Hiroyuki Yashida:“绝对 CM 周期”美国数学学会。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Akio Fujii: "Values if the Epstein zeta functions"J. of Math. Kyoto University. 41. 627-667 (2002)
Akio Fujii:“Epstein zeta 功能的价值”J.
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kaoru Hiraga: "Onfunctoriality of Zelevinski involution"Compositio Moth. (in press).
平贺薰(Kaoru Hiraga):“论泽列温斯基对合的函数性”复合蛾。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
藤井昭雄: "On the pair correlation of the zeros of the Riemann zeta function"Analytic Number Theory(published by Kluwer). 127-142 (2002)
Akio Fujii:“论黎曼 zeta 函数零点的配对相关性”解析数论(Kluwer 出版)127-142(2002 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YOSHIDA Hiroyuki其他文献
YOSHIDA Hiroyuki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YOSHIDA Hiroyuki', 18)}}的其他基金
Photonic Properties of Liquid Crystal Blue Phases and their Application to Photonic Devices
液晶蓝相的光子特性及其在光子器件中的应用
- 批准号:
21860054 - 财政年份:2009
- 资助金额:
$ 7.49万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Research on the derivative of L-functions and automorphic forms
L-函数的导数和自守形式的研究
- 批准号:
21540014 - 财政年份:2009
- 资助金额:
$ 7.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Elucidation of the mechanism of ovarian cancer metastasis
阐明卵巢癌转移机制
- 批准号:
19791160 - 财政年份:2007
- 资助金额:
$ 7.49万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Development of New Chitin Continuous Producing Method from Crab Shell Using Sub-critical Water Treatment
亚临界水处理蟹壳连续生产甲壳素新方法的开发
- 批准号:
18360437 - 财政年份:2006
- 资助金额:
$ 7.49万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research on periods, L-functions and automorphic forms
周期、L-函数和自守形式的研究
- 批准号:
16340006 - 财政年份:2004
- 资助金额:
$ 7.49万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Conversion to Biodegradable Polylactic Acid and High Speed Methane Fermentation of Paper Manufacture Sludge with Sub-Critical Water Treatment
亚临界水处理造纸污泥转化为可生物降解聚乳酸和高速甲烷发酵
- 批准号:
13480180 - 财政年份:2001
- 资助金额:
$ 7.49万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Conversion of waste fish meat to bio-degradable plastics poly lactic acid by sub-critcal water oxidation
亚临界水氧化将废鱼肉转化为可生物降解塑料聚乳酸
- 批准号:
10480147 - 财政年份:1998
- 资助金额:
$ 7.49万 - 项目类别:
Grant-in-Aid for Scientific Research (B).
Zero Emissions by Forming Networks among Various Production Processes in Different Types of Industries
通过在不同类型行业的各个生产过程之间形成网络来实现零排放
- 批准号:
09247107 - 财政年份:1997
- 资助金额:
$ 7.49万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas (A)
DEVELOPMENT OF COMPOSITE OF CHITOSAN AND DEXTRAN FOR SEPARATION OF PROTEINS AND ITS APPLICATION FOR INDUSTRIAL LARGE SCALE PROTEIN SEPARATION
壳聚糖与右旋糖酐复合蛋白质分离材料的研制及其在工业化大规模蛋白质分离中的应用
- 批准号:
07650926 - 财政年份:1995
- 资助金额:
$ 7.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on automorphic representations
自守表示研究
- 批准号:
06402001 - 财政年份:1994
- 资助金额:
$ 7.49万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
相似国自然基金
GL(n)上的自守形式与自守L-函数的解析性质
- 批准号:12371006
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
自守形式和L-函数的值分布
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
关于高阶自守形式情形的Möbius正交性猜想及其在L-函数理论中的应用
- 批准号:11801318
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
Eichler积分及模形式系数相关问题研究
- 批准号:11801401
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
迹公式在自守形式中的应用
- 批准号:11801327
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Automorphic forms, algebraic varieties and Iwasawa theory
自守形式、代数簇和岩泽理论
- 批准号:
24740017 - 财政年份:2012
- 资助金额:
$ 7.49万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Study on arithmetic invariants attached to automorphic forms
自守形式算术不变量的研究
- 批准号:
18540057 - 财政年份:2006
- 资助金额:
$ 7.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on periods, L-functions and automorphic forms
周期、L-函数和自守形式的研究
- 批准号:
16340006 - 财政年份:2004
- 资助金额:
$ 7.49万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
ON AUTOMORPHIC L-FUNCTIONS OF GENERAL SYMPLECTIC AND UNITARY GROUPS OF RANK TWO
关于一般辛和二阶酉群的自同构L函数
- 批准号:
16540034 - 财政年份:2004
- 资助金额:
$ 7.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on automorphic forms, automorphic L-functions and Shintani functions.
自同构形式、自同构 L 函数和 Shintani 函数的研究。
- 批准号:
14340006 - 财政年份:2002
- 资助金额:
$ 7.49万 - 项目类别:
Grant-in-Aid for Scientific Research (B)