Study on arithmetic invariants attached to automorphic forms
自守形式算术不变量的研究
基本信息
- 批准号:18540057
- 负责人:
- 金额:$ 2.5万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2006
- 资助国家:日本
- 起止时间:2006 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
(1) For an elliptic cusp form f on a Hecke congruence subgroup and a Hecke character W of an imaginary quadratic field K, I showed that the square of a xertain CM-period attached to (f,W) is expressed in terms of the central value of the L-function attached to (f,W), when the level off is square free.(2) We proposed a conjecture concerning a relation between the Fourier-Jacobi coefficients of a cusp form F on U(2,1) and the central values of automorphic L-functions attaced to F. The conjecture are proved when F is a holomorphic Eisenstein series or a unitary Kudla lift. The results in (1) are essentially used in the proof of the latter result. This is a joint work with Takashi Sugano.(3) Let f and f' be automorphic forms on GL(2) and the multiplicative group of a quaternion algebra B, respectively. Let L(f,f') be the theta lift on Sp(1,1) constructed from (f,f'). We showed that L(f,f') is a Hecke eigenform if so are f and f'. We also showed that the Fourier coefficients of L(f,f') are expressed in terms of CM-periods of f and f'. This is a joint work with Hiro-aki Narita.(4) A p-adic infinite family of Hilbert modular forms parameterized by an Affinoid Hecke variety is constructed. When the degree of the base field F is even, a p-adically analytic infinite family of Hilbert Hecke eigenforms of a fixed finite slope parameterized by weights is constructed. This is a work of Atsushi Yamagami.
(1)对于Hecke一致性亚组的椭圆形尖端形式F和一个假想的二次二次场K的hecke特征,我表明,与(f,w)附加的x ex period的平方表示,在(f,w)中附加了l-function的中心价值(f,w)的中心价值,当时clucked neveling claste never conterne cluss nevient conterne conters nefe and n s a n sare(2)我们(2)我们(2)我们(2)我们(2)我们(2)。 u(2,1)上尖的尖端jacobi系数和对F上的自动形态L功能的中心值。当F是f是h holomorphic eisenstein系列或统一的kudla升力时,证明了猜想。 (1)中的结果基本用于后一个结果的证明。这是与takashi sugano的共同作品。(3)令F和F'为GL(2)和四元组代数B的乘法组的自动形式。令L(f,f')为sp(1,1)上(f,f')上的theta升力。我们表明,如果是f和f',则L(f,f')是Hecke特征形式。我们还表明,L(f,f')的傅立叶系数是用F和F'的CM-周期表示的。这是与Hiro-Aki Narita的联合作品。(4)建造了由affinoid Hecke品种参数化的Hilbert模块化形式的P-Adic Infinite家族。当基本F的程度均匀时,构建了由权重参数参数的固定有限斜率的Hilbert Hecke特征形式的P-Autialtion分析性无限家族。这是Atsushi Yamagami的作品。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On p-adic families of Hilbert cups forms of finite slope
有限斜率希尔伯特杯形式的 p 进族
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:A.Murase;T.Sugano;A.Yamagami
- 通讯作者:A.Yamagami
Fourier-Jacobi expansion of automorphic forms on U(2,1)
U(2,1) 上自守形式的傅里叶-雅可比展开
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:A.Murase;T.Sugano;A.Yamagami;A.Murase
- 通讯作者:A.Murase
Commutation relations of Hecke operators for Arakawa lift
荒川电梯 Hecke 算子的换向关系
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:K. Kurano;E.-i. Sato;A. K. Singh and K.-i. Watanabe;早坂太・山田修平;K. Kurano;早坂太;K.Kurano;F.Hayasaka;早坂太;K. Kurano;F. Hayasaka;F. Hayasaka;早坂太;藏野和彦;鴨井祐二;蔵野和彦;早坂太;K. Kurano;K. Kurano;K. Kurano;藏野 和彦;藏野和彦;藏野 和彦;早坂 太;早坂太;早坂 太;F. Hayasaka;K. Kurano;藏野 和彦;早坂 太;F. Hayasaka;藏野和彦;藏野 和彦;早坂太;早坂太;藏野和彦;藏野 和彦;K. Kurano;藏野 和彦;藏野和彦;早坂太;藏野和彦;藏野和彦;藏野和彦;K. Kurano;A.Murase;A. Murase
- 通讯作者:A. Murase
On p-adic families of Hilbert cusp forms of finite slope
有限斜率希尔伯特尖点形式的 p 进族
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Anatol N. Kirillov;Toshiaki Maeno;高橋宣能;Anatol N. Kirillov and Toshiaki Maeno;高橋宣能;Anatol N. kirillov and Toshiaki Maeno;Toshiaki Maeno;Y.Ichihara;Yumiko Ichihara;Atsushi Yamagami
- 通讯作者:Atsushi Yamagami
Fourier-Jacobi expansion of automorphic forms on U(2, 1)
U(2, 1) 上自守形式的傅里叶-雅可比展开
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:A.Murase;T.Sugano;A.Yamagami;A.Murase;A. Murase
- 通讯作者:A. Murase
共 5 条
- 1
MURASE Atsushi的其他基金
A study on automorphic forms of several variables with symmetries of level structure
具有水平结构对称性的多变量自同构形式的研究
- 批准号:17K0518617K05186
- 财政年份:2017
- 资助金额:$ 2.5万$ 2.5万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Studies on symmetries for automorphic forms and Borcherds products
自守形式和 Borcherds 积的对称性研究
- 批准号:2640002726400027
- 财政年份:2014
- 资助金额:$ 2.5万$ 2.5万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Arithmetic invariants and automorphic L-functions for automorphic forms of several variables
多个变量自同构形式的算术不变量和自同构 L 函数
- 批准号:2354003323540033
- 财政年份:2011
- 资助金额:$ 2.5万$ 2.5万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
On automorphic forms on algebraic groups: Arithmetic invariants and automorphic L-functions
关于代数群的自同构:算术不变量和自同构 L 函数
- 批准号:2054003120540031
- 财政年份:2008
- 资助金额:$ 2.5万$ 2.5万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Study on automorphic forms on algebraic groups and associated zeta functions
代数群自守形式及相关zeta函数的研究
- 批准号:1344001613440016
- 财政年份:2001
- 资助金额:$ 2.5万$ 2.5万
- 项目类别:Grant-in-Aid for Scientific Research (B)Grant-in-Aid for Scientific Research (B)
Studies on arithmetic automorphic forms and zeta functions
算术自守形式和zeta函数的研究
- 批准号:0944002509440025
- 财政年份:1997
- 资助金额:$ 2.5万$ 2.5万
- 项目类别:Grant-in-Aid for Scientific Research (B)Grant-in-Aid for Scientific Research (B)
相似国自然基金
自守形式的傅立叶系数
- 批准号:12171331
- 批准年份:2021
- 资助金额:51 万元
- 项目类别:面上项目
模形式傅立叶系数的均值估计
- 批准号:11026075
- 批准年份:2010
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
相似海外基金
New bounds towards Fourier coefficients of Siegel modular forms
西格尔模形式傅里叶系数的新界限
- 批准号:EP/W001160/1EP/W001160/1
- 财政年份:2021
- 资助金额:$ 2.5万$ 2.5万
- 项目类别:Research GrantResearch Grant
Automorphic forms on higher rank groups: Fourier coefficients, L-functions, and arithmetic
高阶群上的自守形式:傅立叶系数、L 函数和算术
- 批准号:EP/T028343/1EP/T028343/1
- 财政年份:2020
- 资助金额:$ 2.5万$ 2.5万
- 项目类别:Research GrantResearch Grant
Fourier coefficients and zeros of modular forms
模形式的傅立叶系数和零点
- 批准号:19F1931819F19318
- 财政年份:2019
- 资助金额:$ 2.5万$ 2.5万
- 项目类别:Grant-in-Aid for JSPS FellowsGrant-in-Aid for JSPS Fellows
Some Problems on Fourier Coefficients of Automorphic Forms and L-functions
自守形式和L函数傅里叶系数的一些问题
- 批准号:19018021901802
- 财政年份:2019
- 资助金额:$ 2.5万$ 2.5万
- 项目类别:Continuing GrantContinuing Grant
Fourier coefficients of kernels of casp forms.
casp 形式内核的傅里叶系数。
- 批准号:19465661946566
- 财政年份:2017
- 资助金额:$ 2.5万$ 2.5万
- 项目类别:StudentshipStudentship