On automorphic forms on algebraic groups: Arithmetic invariants and automorphic L-functions
关于代数群的自同构:算术不变量和自同构 L 函数
基本信息
- 批准号:20540031
- 负责人:
- 金额:$ 2.83万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2008
- 资助国家:日本
- 起止时间:2008 至 2010
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Several invariants are attached to automorphic forms on algebraic groups. These invariants and relationships between them are very useful for studying the internal structure of automorphic forms. In this research, we investigated relationships between these invariants for automorphic forms of special kind called Aarkawa liftings. Using this result, we proposed certain conjectures on relations between invariants attached to automorphic forms on certain groups. We showed that automorphic forms called Borcherds products have strong symmetries (the multiplicative symmetries). We also studied the Borcherds products in detail in the genus two Siegel modular case. In particular, we obtained several results about the weights and characters of Borcherds products.
几个不变性附着在代数组上的自动形式。这些不变的及其之间的关系对于研究自动形式的内部结构非常有用。在这项研究中,我们调查了这些不变的人之间的关系,用于自动形式的特殊形式,称为Aarkawa升降机。使用此结果,我们提出了某些猜想,这些猜想是关于某些组上自动形式的不变性之间的关系。我们表明,称为Borcherds产品的自动形式具有强对称性(乘数对称性)。我们还详细研究了两个Siegel模块化案例中的Borcherds产品。特别是,我们获得了有关Borcherds产品的权重和特征的几个结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Borcherds lifts on Sp_2(Z), "Geometry and Analysis of Automorphic Forms of Several Variables"
Borcherds 在 Sp_2(Z) 上的提升,“多变量自守形式的几何与分析”
- DOI:
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:B.Heim;A.Murase
- 通讯作者:A.Murase
Commutation relations of Heckeoperators for Arakawa lifting
荒川提升的 Hecke 算子的交换关系
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:A.Murase;H.Narita
- 通讯作者:H.Narita
A characterization of Borcherds lifts by symmetries
通过对称性描述 Borcherds 升力
- DOI:
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:B. Heim;A. Murase;Atsushi Murase and Bernhard Heim;Shin-ya Koyama and Nobushige Kurokawa;A. Murase;Shin-ya Koyama and Sachiko Nakajima;A. Murase;小山信也;B. Heim and A. Murase
- 通讯作者:B. Heim and A. Murase
On recurrence relations and functional equations of infinite products
关于无限乘积的递推关系和函数方程
- DOI:
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:B. Heim;A. Murase;Atsushi Murase and Bernhard Heim;Shin-ya Koyama and Nobushige Kurokawa;A. Murase;Shin-ya Koyama and Sachiko Nakajima;A. Murase;小山信也;B. Heim and A. Murase;Shin-ya Koyama and Nobushige Kurokawa;B. Heim and A. Murase
- 通讯作者:B. Heim and A. Murase
Fourier expansion of Arakawa lifting I : An explicit formula and examples of non-vanishing lifts
荒川提升 I 的傅立叶展开:非消失提升的显式公式和示例
- DOI:
- 发表时间:2012
- 期刊:
- 影响因子:1
- 作者:A. Murase;H. Narita
- 通讯作者:H. Narita
共 10 条
- 1
- 2
MURASE Atsushi的其他基金
A study on automorphic forms of several variables with symmetries of level structure
具有水平结构对称性的多变量自同构形式的研究
- 批准号:17K0518617K05186
- 财政年份:2017
- 资助金额:$ 2.83万$ 2.83万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Studies on symmetries for automorphic forms and Borcherds products
自守形式和 Borcherds 积的对称性研究
- 批准号:2640002726400027
- 财政年份:2014
- 资助金额:$ 2.83万$ 2.83万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Arithmetic invariants and automorphic L-functions for automorphic forms of several variables
多个变量自同构形式的算术不变量和自同构 L 函数
- 批准号:2354003323540033
- 财政年份:2011
- 资助金额:$ 2.83万$ 2.83万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Study on arithmetic invariants attached to automorphic forms
自守形式算术不变量的研究
- 批准号:1854005718540057
- 财政年份:2006
- 资助金额:$ 2.83万$ 2.83万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Study on automorphic forms on algebraic groups and associated zeta functions
代数群自守形式及相关zeta函数的研究
- 批准号:1344001613440016
- 财政年份:2001
- 资助金额:$ 2.83万$ 2.83万
- 项目类别:Grant-in-Aid for Scientific Research (B)Grant-in-Aid for Scientific Research (B)
Studies on arithmetic automorphic forms and zeta functions
算术自守形式和zeta函数的研究
- 批准号:0944002509440025
- 财政年份:1997
- 资助金额:$ 2.83万$ 2.83万
- 项目类别:Grant-in-Aid for Scientific Research (B)Grant-in-Aid for Scientific Research (B)
相似海外基金
Quantization of simply-laced isomonodromy systems
简单等单系统的量化
- 批准号:15K1755215K17552
- 财政年份:2015
- 资助金额:$ 2.83万$ 2.83万
- 项目类别:Grant-in-Aid for Young Scientists (B)Grant-in-Aid for Young Scientists (B)
Study of Fourier-Jacobi type spherical functions for Siegel modular forms of degree two and its application
二次Siegel模形式的Fourier-Jacobi型球函数研究及其应用
- 批准号:2454002224540022
- 财政年份:2012
- 资助金额:$ 2.83万$ 2.83万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Arithmetic invariants and automorphic L-functions for automorphic forms of several variables
多个变量自同构形式的算术不变量和自同构 L 函数
- 批准号:2354003323540033
- 财政年份:2011
- 资助金额:$ 2.83万$ 2.83万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Study of Fourier-Jacobi type spherical functions for Siegel modular forms of degree two and its application
二次Siegel模形式的Fourier-Jacobi型球函数研究及其应用
- 批准号:2174002021740020
- 财政年份:2009
- 资助金额:$ 2.83万$ 2.83万
- 项目类别:Grant-in-Aid for Young Scientists (B)Grant-in-Aid for Young Scientists (B)
L-functions attached to non-holomorphic Siegel modular forms-Local theory and its global applications
附加到非全纯Siegel模形式的L函数-局域理论及其全局应用
- 批准号:2074001520740015
- 财政年份:2008
- 资助金额:$ 2.83万$ 2.83万
- 项目类别:Grant-in-Aid for Young Scientists (B)Grant-in-Aid for Young Scientists (B)