Learning Algorithms for Predictive Modeling in Biomedical Computing: Methods and Applications
生物医学计算中预测建模的学习算法:方法与应用
基本信息
- 批准号:RGPIN-2020-07117
- 负责人:
- 金额:$ 3.5万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Computer Aided Interventions (CAI) refer to systems that incorporate information from a multitude of biosensors, with computational algorithms to assist in decision making. CAI systems are a cornerstone of modern medicine and have played a significant role for the past few decades in areas such as radiology and robotic surgery. The vast amount of data generated from various biosensors and tools (e.g. imaging modalities) for CAI are complemented by unprecedented advances in computational approaches in particular machine learning for analysis of data. Understanding biomedical data has therefore been impacted fundamentally, mostly in a positive manner, with this trend expected to grow. However, in practice, the abundance of machine learning solutions stands in stark contrast to their uptake in decision making with practical impact. Of the significant challenges for realizing this are the noisy and highly heterogenous nature of the data from various modalities and populations, and the limited availability and inaccurate nature of annotations. The overarching goal of this proposal is to design the next generation of learning algorithms and critical decision-making approaches for actionable, optimized CAI that address the challenges to the uptake of the developed techniques in this domain. I propose innovative methods that: i) disentangle informative task-specific attributes of data from modality-specific attributes. Task-specific attributes can then be used to ensure knowledge learned from one domain of data (e.g. imaging modality such as raw US) is transferable to other domains (e.g. B-mode US). To fuse multiple modalities of data, flexible and efficient deep learning-based approaches that eliminate optimization during registration and provide uncertainty estimates are devised; ii) involve discriminative and generative approaches to learn from data with imprecise annotations through unsupervised discovery of associations between data points, and decision making using such associations in the context of limited available gold-standard annotations; iii) provide decision support for tissue classification using simultaneous theory-guided and data-driven learning. Theory-based, simulated data allow convergence to a solution and experimental data help minimize the residual error from the previous step, through unsupervised adversarial methods. The proposed research program will provide training for 3 PhD, 3 MSc and 5UG HQP. State of the art interdisciplinary training environment for HQP that follows the principals of Equity, Diversity and Inclusion will be provided. Trainees will acquire a wide spectrum of skills including image processing, machine learning, decision making and software development. They will learn to translate their knowledge of computing to high impact problems with practical implications. Their training will be of considerable value to a growing demand in both public and private sectors in machine learning and biomedicine.
计算机辅助干预 (CAI) 是指整合来自多个生物传感器的信息并通过计算算法辅助决策的系统。 CAI 系统是现代医学的基石,过去几十年在放射学和机器人手术等领域发挥了重要作用。用于 CAI 的各种生物传感器和工具(例如成像模式)生成的大量数据得到了计算方法(特别是用于数据分析的机器学习)空前进步的补充。因此,对生物医学数据的理解受到了根本性的影响,主要是积极的影响,而且这种趋势预计还会增长。然而,在实践中,丰富的机器学习解决方案与它们在决策中的实际影响形成了鲜明的对比。实现这一点的重大挑战包括来自不同模式和群体的数据的噪声和高度异质性,以及注释的可用性有限和不准确。 该提案的总体目标是为可操作、优化的 CAI 设计下一代学习算法和关键决策方法,以解决该领域已开发技术的采用所面临的挑战。我提出的创新方法是:i)将数据的信息性任务特定属性与模态特定属性分开。然后,可以使用特定于任务的属性来确保从一个数据域(例如,原始 US 等成像模式)学到的知识可以转移到其他域(例如,B 模式 US)。为了融合多种数据模式,设计了灵活高效的基于深度学习的方法,消除了配准过程中的优化并提供不确定性估计; ii) 涉及判别性和生成性方法,通过无监督地发现数据点之间的关联,从具有不精确注释的数据中学习,并在有限的可用黄金标准注释的情况下使用此类关联进行决策; iii) 使用理论指导和数据驱动的同步学习为组织分类提供决策支持。基于理论的模拟数据允许收敛到解决方案,而实验数据有助于通过无监督的对抗方法最大限度地减少上一步的残余误差。拟议的研究计划将为 3 名博士、3 名理学硕士和 5 名 UG HQP 提供培训。将为 HQP 提供遵循公平、多元化和包容性原则的最先进的跨学科培训环境。学员将获得广泛的技能,包括图像处理、机器学习、决策和软件开发。他们将学习将计算知识转化为具有实际意义的高影响力问题。他们的培训对于公共和私营部门对机器学习和生物医学不断增长的需求具有相当大的价值。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mousavi, Parvin其他文献
iPINBPA: an integrative network-based functional module discovery tool for genome-wide association studies.
iPINBPA:一种基于网络的综合功能模块发现工具,用于全基因组关联研究。
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Wang, Lili;Mousavi, Parvin;Baranzini, Sergio E - 通讯作者:
Baranzini, Sergio E
Transfer learning from RF to B-mode temporal enhanced ultrasound features for prostate cancer detection.
从 RF 到 B 模式时间增强超声特征的迁移学习,用于前列腺癌检测。
- DOI:
- 发表时间:
2017-07 - 期刊:
- 影响因子:0
- 作者:
Azizi, Shekoofeh;Mousavi, Parvin;Yan, Pingkun;Tahmasebi, Amir;Kwak, Jin Tae;Xu, Sheng;Turkbey, Baris;Choyke, Peter;Pinto, Peter;Wood, Bradford;Abolmaesumi, Purang - 通讯作者:
Abolmaesumi, Purang
A user-driven machine learning approach for RNA-based sample discrimination and hierarchical classification
一种用户驱动的机器学习方法,用于基于 RNA 的样本区分和层次分类
- DOI:
10.1016/j.xpro.2023.102661 - 发表时间:
2023-10-31 - 期刊:
- 影响因子:0
- 作者:
Imtiaz, Tashifa;Nanayakkara, Jina;Fang, Alexis;Jomaa, Danny;Mayotte, Harrison;Damiani, Simona;Javed, Fiza;Jones, Tristan;Kaczmarek, Emily;Adebayo, Flourish Omolara;Imtiaz, Uroosa;Li, Yiheng;Zhang, Richard;Mousavi, Parvin;Renwick, Neil;Tyryshkin, Kathrin - 通讯作者:
Tyryshkin, Kathrin
Computer-aided diagnosis of prostate cancer with emphasis on ultrasound-based approaches: A review
- DOI:
10.1016/j.ultrasmedbio.2007.01.008 - 发表时间:
2007-07-01 - 期刊:
- 影响因子:2.9
- 作者:
Moradi, Mehdi;Mousavi, Parvin;Abolmaesumi, Purang - 通讯作者:
Abolmaesumi, Purang
Open Source Platform for Transperineal In-Bore MRI-Guided Targeted Prostate Biopsy.
用于经会阴腔内 MRI 引导的靶向前列腺活检的开源平台。
- DOI:
- 发表时间:
2020-02 - 期刊:
- 影响因子:0
- 作者:
Herz, Christian;MacNeil, Kyle;Behringer, Peter A;Tokuda, Junichi;Mehrtash, Alireza;Mousavi, Parvin;Kikinis, Ron;Fennessy, Fiona M;Tempany, Clare M;Tuncali, Kemal;Fedorov, Andriy - 通讯作者:
Fedorov, Andriy
Mousavi, Parvin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mousavi, Parvin', 18)}}的其他基金
CREATE Training Program in Medical Informatics: Preparing Canada's Workforce for Health Data of Tomorrow
创建医疗信息学培训计划:让加拿大劳动力为明天的健康数据做好准备
- 批准号:
555366-2021 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
Collaborative Research and Training Experience
Learning Algorithms for Predictive Modeling in Biomedical Computing: Methods and Applications
生物医学计算中预测建模的学习算法:方法与应用
- 批准号:
RGPIN-2020-07117 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Learning Algorithms for Predictive Modeling in Biomedical Computing: Methods and Applications
生物医学计算中预测建模的学习算法:方法与应用
- 批准号:
RGPIN-2020-07117 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
CREATE Training Program in Medical Informatics: Preparing Canada's Workforce for Health Data of Tomorrow
创建医疗信息学培训计划:让加拿大劳动力为明天的健康数据做好准备
- 批准号:
555366-2021 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
Collaborative Research and Training Experience
An integrated spectroscopy-ultrasound surgical navigation system for residual cancer detection in breast surgery.
用于乳腺手术中残留癌症检测的集成光谱超声手术导航系统。
- 批准号:
538824-2019 - 财政年份:2020
- 资助金额:
$ 3.5万 - 项目类别:
Collaborative Health Research Projects
Learning Algorithms for Predictive Modeling in Biomedical Computing: Methods and Applications
生物医学计算中预测建模的学习算法:方法与应用
- 批准号:
RGPIN-2020-07117 - 财政年份:2020
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Learning Algorithms for Predictive Modeling in Biomedical Computing: Methods and Applications
生物医学计算中预测建模的学习算法:方法与应用
- 批准号:
RGPIN-2020-07117 - 财政年份:2020
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
An integrated spectroscopy-ultrasound surgical navigation system for residual cancer detection in breast surgery.
用于乳腺手术中残留癌症检测的集成光谱超声手术导航系统。
- 批准号:
538824-2019 - 财政年份:2020
- 资助金额:
$ 3.5万 - 项目类别:
Collaborative Health Research Projects
An integrated spectroscopy-ultrasound surgical navigation system for residual cancer detection in breast surgery.
用于乳腺手术中残留癌症检测的集成光谱超声手术导航系统。
- 批准号:
538824-2019 - 财政年份:2019
- 资助金额:
$ 3.5万 - 项目类别:
Collaborative Health Research Projects
An integrated spectroscopy-ultrasound surgical navigation system for residual cancer detection in breast surgery.
用于乳腺手术中残留癌症检测的集成光谱超声手术导航系统。
- 批准号:
538824-2019 - 财政年份:2019
- 资助金额:
$ 3.5万 - 项目类别:
Collaborative Health Research Projects
相似国自然基金
病理-影像深度学习算法对胰腺癌免疫微环境空间结构异质性的构建和预测
- 批准号:82271972
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
基于因果推断和物理引导的面向天气预报与气候预测的深度学习理论算法及可解释性研究
- 批准号:U2142211
- 批准年份:2021
- 资助金额:260 万元
- 项目类别:专项基金项目
基于图约束的链路预测可解释性理论和算法研究
- 批准号:61902274
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
潜在功能性长非编码RNA预测算法研究及应用
- 批准号:61801081
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
蛋白质丙二酰化修饰位点预测算法开发及其与代谢疾病的关联性分析
- 批准号:31701142
- 批准年份:2017
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A Novel Algorithm to Identify People with Undiagnosed Alzheimer's Disease and Related Dementias
一种识别未确诊阿尔茨海默病和相关痴呆症患者的新算法
- 批准号:
10696912 - 财政年份:2023
- 资助金额:
$ 3.5万 - 项目类别:
Improving Diagnosis in Gastrointestinal Cancer: Integrating Prediction Models into Routine Clinical Care
改善胃肠癌的诊断:将预测模型纳入常规临床护理
- 批准号:
10641060 - 财政年份:2023
- 资助金额:
$ 3.5万 - 项目类别:
Optimization of monitoring, prediction and phenotyping of deterioration of inhospital patients using machine learning and multimodal real time data
使用机器学习和多模态实时数据优化住院患者病情恶化的监测、预测和表型分析
- 批准号:
10735863 - 财政年份:2023
- 资助金额:
$ 3.5万 - 项目类别:
Early detection and risk of head and neck cancer through immune based spatial omics
通过基于免疫的空间组学早期发现头颈癌并降低风险
- 批准号:
10766467 - 财政年份:2023
- 资助金额:
$ 3.5万 - 项目类别:
Individual Multimodal Pathway Statistics for Predicting Treatment Response in Late-life Depression
用于预测晚年抑郁症治疗反应的个体多模式通路统计
- 批准号:
10722921 - 财政年份:2023
- 资助金额:
$ 3.5万 - 项目类别: