Individual Multimodal Pathway Statistics for Predicting Treatment Response in Late-life Depression

用于预测晚年抑郁症治疗反应的个体多模式通路统计

基本信息

项目摘要

Modest response rates to first-line antidepressant treatment for late-life depression (LLD) expose individuals to prolonged depressive symptoms that worsen their prognosis and associated health risks. Biomarkers of treatment response can alleviate this burden by identifying individuals most likely to benefit from antidepressant treatment. MRI measures of brain structure and function are a promising tool to identify such biomarkers, though the performance required for clinical translation has remained elusive. The goal of this proposal is to integrate complementary network measures from structural and functional MRI with clinical measures to generate biologically relevant features that can improve prediction of treatment outcome in LLD. The anticipated impact of this research will provide improved personalization of LLD treatment (NIMH Strategic Objective 3.2), while elucidating the neural circuitry indicative of treatment outcome (Objective 1.3). To achieve this goal, structural, resting state, and diffusion-weighted MRI will be collected from 75 participants with LLD before commencing an algorithmic antidepressant treatment protocol. The role of resting state functional connectivity as a mediator of the relationship between structural connectivity and clinical measures (baseline depression severity and change in depression severity over treatment) will be investigated within key neural circuitry at the group level. Individual Multimodal Pathway Statistics (IMPathS) will be derived to quantify the personalized importance of functional connectivity to the relationship between structural connectivity and depression severity for prediction of treatment outcome at the individual level. Utility of IMPathS will be assessed by their ability to improve performance beyond unimodal MRI and clinical predictors. Dr. Gerlach has a PhD in nuclear engineering and radiological sciences and is completing a transition from computational physics to computational neuroscience. He will require additional training in 1) the neurobiology, clinical manifestations, and treatment of LLD, 2) diffusion-weighted imaging processing and analysis, 3) advanced statistical training for development and testing of IMPathS, 4) human subjects, study design, and data collection. Completion of the training and research plan in this career development award will enable Dr. Gerlach to progress to an independent investigator focused on investigating the neurobiology of late life anxiety and mood disorders through improved integration of multimodal neuroimaging measures. Dr. Gerlach will execute this training and research with the full support of the Department of Psychiatry at the University of Pittsburgh, which is a highly collaborative environment focused on the development of early career scientists.
对晚期抑郁症 (LLD) 一线抗抑郁治疗的反应率适中,使个人面临 长期的抑郁症状会恶化他们的预后和相关的健康风险。生物标志物 治疗反应可以通过确定最有可能受益的个人来减轻这种负担 抗抑郁治疗。大脑结构和功能的 MRI 测量是识别此类疾病的有前途的工具 尽管临床转化所需的性能仍然难以捉摸。此举的目标 建议将结构和功能 MRI 的补充网络测量与 产生生物学相关特征的临床措施,可以改善治疗的预测 LLD 的结果。这项研究的预期影响将改善 LLD 的个性化 治疗(NIMH 战略目标 3.2),同时阐明指示治疗结果的神经回路 (目标 1.3)。为了实现这一目标,将收集结构、静息状态和扩散加权 MRI 75 名患有 LLD 的参与者在开始算法抗抑郁治疗方案之前。的作用 静息态功能连接作为结构连接和结构连接之间关系的中介 临床测量(基线抑郁严重程度和治疗期间抑郁严重程度的变化)将 在群体层面的关键神经回路中进行研究。个体多模式路径统计 (IMPathS) 将得出量化功能连接对之间关系的个性化重要性 结构连通性和抑郁严重程度用于预测个体水平的治疗结果。公用事业 IMPathS 的评估将通过其提高单模态 MRI 和临床表现的能力来评估 预测因子。 Gerlach 博士拥有核工程和放射科学博士学位,并正在完成一项 从计算物理学到计算神经科学的转变。他将需要以下方面的额外培训:1) LLD 的神经生物学、临床表现和治疗,2) 弥散加权成像处理和 分析,3) 用于 IMPathS 开发和测试的高级统计培训,4) 人类受试者、研究 设计、数据收集。完成本职业发展奖的培训和研究计划将 使 Gerlach 博士能够晋升为一名独立研究者,专注于研究最近的神经生物学 通过改进多模式神经影像测量的整合来治疗生活焦虑和情绪障碍。博士。 格拉赫将在精神病学系的全力支持下执行这项培训和研究 匹兹堡大学是一个高度协作的环境,专注于早期发展 职业科学家。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Robert Gerlach其他文献

Andrew Robert Gerlach的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
  • 批准号:
    62372118
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向年龄相关性黄斑变性诊断的迁移学习算法研究
  • 批准号:
    62371328
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
基于信息年龄的自组网分布式及时信息调度算法研究
  • 批准号:
    62102232
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
异质动态网络上年龄结构传染病模型及算法研究
  • 批准号:
    11701348
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
视网膜年龄相关性黄斑病变OCT图像的三维分割算法研究
  • 批准号:
    61401294
  • 批准年份:
    2014
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Sex-differences in HIV persistence and Immune Dynamics during Reproductive Aging
生殖衰老过程中艾滋病毒持久性和免疫动态的性别差异
  • 批准号:
    10838316
  • 财政年份:
    2023
  • 资助金额:
    $ 17.58万
  • 项目类别:
CRCNS: Deep Learning to Discover Neurovascular Disruptions in Alzheimer's Disease
CRCNS:深度学习发现阿尔茨海默病的神经血管破坏
  • 批准号:
    10831259
  • 财政年份:
    2023
  • 资助金额:
    $ 17.58万
  • 项目类别:
MASS: Muscle and disease in postmenopausal women
MASS:绝经后妇女的肌肉和疾病
  • 批准号:
    10736293
  • 财政年份:
    2023
  • 资助金额:
    $ 17.58万
  • 项目类别:
Eye as a Window into Brain Health in Pediatric Hydrocephalus
眼睛是了解小儿脑积水大脑健康的窗口
  • 批准号:
    10659299
  • 财政年份:
    2023
  • 资助金额:
    $ 17.58万
  • 项目类别:
Health and Financial Costs of Unequal Care: Colorectal Cancer as a Case Study
不平等护理的健康和财务成本:结直肠癌案例研究
  • 批准号:
    10656807
  • 财政年份:
    2023
  • 资助金额:
    $ 17.58万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了