Study of the stability theory of polarized compact Kahler manifolds
极化紧致卡勒流形稳定性理论研究
基本信息
- 批准号:02640046
- 负责人:
- 金额:$ 1.15万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (C)
- 财政年份:1990
- 资助国家:日本
- 起止时间:1990 至 1991
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We have obtained the following results concerning our research project.l. A. Fujiki : (1)has introduced a hyper kahler structure on the module space of representations of the fundamental group of a compact Kahler manifold and has studied, its properties, (2)has studied the existence and the uniquenss of extremal Kahler metrics on a ruled manifolds, (3)has shown an L Dolbeault lemma on a quasi-projective manifold and given its applications to deformations of locally symmetric varieties and to the existence of a Kahler-Einstein metric, and(4)has constructed a natural parabolic sheaf starting from a hermitian vector bundle with certain curvature growth condition defined on a quasi-projective manifold.2. M. Ue has determined the differentiable and geometric structures. together with the deformations of the latter on certain general 4-dimensional Sei Seifert fiber spaces and has also found some exotic differentiable structures, Where the study of elliptic surfaces is especially relevant.3. T. Ueda has studied the iterations of analytic transformations with parabolic fixed point set. Further, he has obtained a condition for a rational curve with a node in a complex surface to admit a strongly pseudoconcave neighborhood. 4. A. Gyouia has given general and explict methods of constructing relative invariants on a prehomogeneous vector space, computing their Fourier transforms and b-functions. Moreover, he has given a counter-example concerning the group action on such a vector space, and developped a representation of theory of group schems 5. H. Saito has given the classification and the product formula for the representations of quaternion algebras over local fields, with a trace formula for a certain Hecke operator as its application. He has also given the characters of the admissible representations of GL(2)via the theory of base change.
我们的研究项目获得了以下结果。 A. Fujiki:(1)在紧卡勒流形的基本群表示的模空间上引入了超卡勒结构,并研究了它的性质,(2)研究了极值卡勒度量的存在性和唯一性规则流形,(3) 展示了拟射影流形上的 L Dolbeault 引理,并给出了其在局部对称簇变形和存在性上的应用Kahler-Einstein度量,并且(4)从厄密向量丛出发,在准射影流形上定义了一定的曲率增长条件,构造了一个自然抛物线束。 2. M. Ue 确定了可微结构和几何结构。结合后者在某些一般的4维Sei Seifert纤维空间上的变形,还发现了一些奇异的可微结构,其中椭圆曲面的研究尤其相关。 3. T. Ueda 研究了抛物线不动点集解析变换的迭代。此外,他还获得了在复杂曲面上具有节点的有理曲线承认强赝凹邻域的条件。 4. A. Gyouia 给出了在预齐次向量空间上构造相对不变量、计算它们的傅立叶变换和 b 函数的通用且显式的方法。此外,他还给出了关于此类向量空间上的群作用的反例,并发展了群方案理论的表示5。H. Saito给出了局部域上四元数代数表示的分类和乘积公式,以某个 Hecke 算子的迹公式作为其应用。他还通过基变理论给出了GL(2)的容许表示的特征。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Gyoja, Akihiko: "Representations of reductive graep schemes" Tsukuba. J. Moah. 15. 335-346 (1991)
Gyoja,Akihiko:“还原 graep 方案的表示”筑波。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
上 正明: "A remark on the sinple invariants for elliptic surfaces and their exotic structures not coming from complex surfaces"
Masaaki Kami:“关于椭圆曲面的简单不变量及其并非来自复杂曲面的奇异结构的评论”
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
藤木 明: "An L^2ーDolbeault lemma and its applications"
Akira Fujiki:“L^2ーDolbeault 引理及其应用”
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
藤木 明: "Hyperkahler Structure on the moduli space of flat boundless,"
Akira Fujiki:“平坦无限模空间上的超卡勒结构”
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
行者 明彦: "Vector valed invariants on prehonogemous" J.Math.Soc.Japan. 43. 117-131 (1991)
Akihiko Gyoja:“矢量验证的前同构不变量”J.Math.Soc.Japan 43. 117-131 (1991)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FUJIKI Akira其他文献
FUJIKI Akira的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('FUJIKI Akira', 18)}}的其他基金
Geometry of twistor spaces
扭量空间的几何
- 批准号:
22340012 - 财政年份:2010
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Geometry of twistor spaces
扭量空间的几何
- 批准号:
18340017 - 财政年份:2006
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Geometry of twistor spaces
扭量空间的几何
- 批准号:
15340022 - 财政年份:2003
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Geometry of twistor spaces
扭量空间的几何
- 批准号:
12440019 - 财政年份:2000
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Geometry of twistor space
扭量空间的几何
- 批准号:
10440020 - 财政年份:1998
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Myocardial anisotropy and cardiac arrhythmias
心肌各向异性和心律失常
- 批准号:
02807086 - 财政年份:1990
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Algebraic-geometrical and arithmetical study of a quotient space of a Riemannian symmetric space by an arithmetic group
通过算术群对黎曼对称空间的商空间进行代数几何和算术研究
- 批准号:
60540038 - 财政年份:1985
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
幾何学的不変式論および確率論的手法を用いたケーラー・リッチソリトンの研究
利用几何不变理论和随机方法研究克勒富孤子
- 批准号:
16J01211 - 财政年份:2016
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Complex Monge Ampere equation, the Kahler Einstein Problem and constant scalar metric problems
复蒙日安培方程、卡勒爱因斯坦问题和常标量度量问题
- 批准号:
1515795 - 财政年份:2015
- 资助金额:
$ 1.15万 - 项目类别:
Standard Grant
Geometry of Almost Complex Manifolds
近复流形的几何
- 批准号:
14540070 - 财政年份:2002
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Hitchin-Kobayashi correspondence for Manifolds
流形的 Hitchin-Kobayashi 对应关系
- 批准号:
13440023 - 财政年份:2001
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Symplectic Structures and Geometry of Canonical Bundle
正则丛的辛结构和几何
- 批准号:
10440021 - 财政年份:1998
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B).