Algebraic-geometrical and arithmetical study of a quotient space of a Riemannian symmetric space by an arithmetic group
通过算术群对黎曼对称空间的商空间进行代数几何和算术研究
基本信息
- 批准号:60540038
- 负责人:
- 金额:$ 1.28万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (C)
- 财政年份:1985
- 资助国家:日本
- 起止时间:1985 至 1986
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Quotinets of pseudo-hermitian symmetric sapces by certain arithmetic groups are realized often as a moduli space of various types of polarized compact Kahler manifolds, and through this fact their structures are clarified. From this point of view we have obtained the following results.1. (1) For a general complex tori, we have classifieid the possible types of its rational endomorphism rings, and the corresponding pseudo-hermitian symmetric space. (2) We have obtained the complete classification of finite automorphism groups of complex tori of dimension two, which reflects the structure of the singularity of our quotient space. Especially, we have obtained explicit description of the moduli space of complex tori with fixed abstract group as automorphism group, as a quotient of a pseudo-hermitian space by arithmetic group. (3) We have found that the spaces in (2) are closely related with certain root lattices.2. (1) As a general structure theorem for compact Kahler symplectic manifolds we have obtained an analogy of Lefschetz-Hodge decomposition theorem, and some remarkable property of a natural 2n-form on the second cohomology group. (2) As an application of (1) we have shown the smoothness of the local moduli space of sufh manifolds; this shows that their moduli space is essentially realized as an open subset of hermitian symmetric space of type IV.3. In general, using the notion of extremal metrics due to Calabi, we have introduced the notion of stability in analogy with that in algebraic geometry, and obtained an entirely new formulation of the moduli theory. There seems much to be developped in the future in this theory.
某些算术群的伪厄米对称空间的引文通常被实现为各种类型的极化紧卡勒流形的模空间,并且通过这个事实它们的结构被澄清。从这个角度出发,我们得到了以下结果: 1. (1)对于一般复环面,我们对其有理自同态环的可能类型以及相应的伪厄米对称空间进行了分类。 (2)我们得到了二维复环有限自同构群的完全分类,它反映了商空间的奇异性结构。特别是,我们获得了具有固定抽象群作为自同构群的复圆环模空间的显式描述,作为伪厄米空间与算术群的商。 (3)我们发现(2)中的空间与某些根格密切相关。2. (1) 作为紧卡勒辛流形的一般结构定理,我们得到了 Lefschetz-Hodge 分解定理的类比,以及第二上同调群上自然 2n 型的一些显着性质。 (2) 作为(1)的应用,我们证明了sufh流形的局部模空间的光滑性;这表明它们的模空间本质上被实现为 IV.3 型厄米对称空间的开子集。总的来说,利用卡拉比提出的极值度量概念,我们引入了与代数几何中类似的稳定性概念,并获得了模理论的全新表述。这一理论在未来似乎还有很多需要发展的地方。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Kato, Shinichi: "A remark on Maass wave forms attached to real quadratic fields"
加藤新一:“关于实二次场的马斯波形的评论”
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Fuji'ie, Tatsuo: "Local normality of a meromorphic function and a Picard type theorem" Journal of Mathematics Kyoto University. 26. 95-99 (1986)
Fujiie Tatsuo:“亚纯函数的局部正态性和皮卡德型定理”京都大学数学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
藤木明: Advanced Studie in Pure Mathematics. 10. 105-165 (1986)
藤木晃:纯数学高级研究。10. 105-165 (1986)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
藤家龍雄: Journal of Mathematics Kyoto University. 26. 95-99 (1986)
藤家辰雄:京都大学数学杂志 26. 95-99 (1986)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Fujiki, Akira: "On the de Rham cohomology group of a compact Kahler symplectic manifold" Advanced Studie in Pure Mathematics. 10. 105-165 (1986)
Fujiki Akira:“关于紧卡勒辛流形的 de Rham 上同调群”纯数学高级研究。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FUJIKI Akira其他文献
FUJIKI Akira的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('FUJIKI Akira', 18)}}的其他基金
Geometry of twistor spaces
扭量空间的几何
- 批准号:
22340012 - 财政年份:2010
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Geometry of twistor spaces
扭量空间的几何
- 批准号:
18340017 - 财政年份:2006
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Geometry of twistor spaces
扭量空间的几何
- 批准号:
15340022 - 财政年份:2003
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Geometry of twistor spaces
扭量空间的几何
- 批准号:
12440019 - 财政年份:2000
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Geometry of twistor space
扭量空间的几何
- 批准号:
10440020 - 财政年份:1998
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study of the stability theory of polarized compact Kahler manifolds
极化紧致卡勒流形稳定性理论研究
- 批准号:
02640046 - 财政年份:1990
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Myocardial anisotropy and cardiac arrhythmias
心肌各向异性和心律失常
- 批准号:
02807086 - 财政年份:1990
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Implementation of Continuum of Care Sepsis Phenotyping and Risk Stratification
脓毒症表型分析和风险分层连续护理的实施
- 批准号:
10429829 - 财政年份:2022
- 资助金额:
$ 1.28万 - 项目类别:
Implementation of Continuum of Care Sepsis Phenotyping and Risk Stratification
脓毒症表型分析和风险分层连续护理的实施
- 批准号:
10612933 - 财政年份:2022
- 资助金额:
$ 1.28万 - 项目类别:
Examining distinct and shared mechanisms underlying arithmetic and reading development through behavioral and neural measures: alongitudinal investigation
通过行为和神经测量来检查算术和阅读发展背后的独特和共享机制:纵向调查
- 批准号:
10480928 - 财政年份:2021
- 资助金额:
$ 1.28万 - 项目类别:
Examining distinct and shared mechanisms underlying arithmetic and reading development through behavioral and neural measures: alongitudinal investigation
通过行为和神经测量来检查算术和阅读发展背后的独特和共享机制:纵向调查
- 批准号:
10311607 - 财政年份:2021
- 资助金额:
$ 1.28万 - 项目类别:
Examining distinct and shared mechanisms underlying arithmetic and reading development through behavioral and neural measures: alongitudinal investigation
通过行为和神经测量来检查算术和阅读发展背后的独特和共享机制:纵向调查
- 批准号:
10626960 - 财政年份:2021
- 资助金额:
$ 1.28万 - 项目类别: