Foliations and Geometric Structures
叶状结构和几何结构
基本信息
- 批准号:02640015
- 负责人:
- 金额:$ 0.96万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (C)
- 财政年份:1990
- 资助国家:日本
- 起止时间:1990 至 1991
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
There are two natural ways to introduce geometric structures into foliations. One is to introduce them in the direction transverse to the leaves, and the other is to do so in the direction tangent to the leaves. The former way has already been studied very much by many people, but it seems that works about the latter way are not so many in the literature.In this research, we investigated these both types of geometric structures on foliations, mainly from the viewpoint of differential topology. Firstly, as for the transverse geometric structures, we studied co-dimension one foliations with transverse projective structure. We clarified the relation between the global holonomy group and the topological properties of the foliations. Furthermore, we showed that a transversely projective foliation cannot have exceptional leaves if the ambient manifold has amenable fundamental group. Secondly, as for the tangential geometric structures, we studied(1)tangentially affine foliations and(2)tangentially holomorphic foliations : (1)Note that tangentially affine foliations appear as Lagrangian foliations on symplectic manifolds. We determined the space of all leafwise affine, functions on a tangentially affine foliation on the torus. We also proved that the three dimensional sphere does not admit any co-dimension one tangentially affine foliation. (2)A Levi-flat real hypersurface in a complex surface has a tangentially holomorphic foliation, which is usually called the Levi foliation. We obtained some topological properties of compact Levi-flat hypersurfaces by investigating the holonomy of total leaves in their Levi foliations. In particular, we showed that the three dimensional sphere cannot be embedded as a Levi-flat hypersurface. This result is applied to two dimensional complex dynamical systems.
有两种自然的方法可以将几何结构引入叶子中。一种是将它们引入横向叶子的方向,另一个是朝着与叶子切线的方向进行。前者已经对许多人进行了很多研究,但是在文献中似乎并不多。首先,至于横向几何结构,我们研究了具有横向射击结构的共构叶。我们阐明了全球全体人类群体与叶子的拓扑特性之间的关系。此外,我们表明,如果环境歧管具有正面的基本组,则横向投射叶片不能具有出色的叶子。其次,至于切向几何结构,我们研究了(1)切向叶子叶子和(2)切向骨膜叶片:(1)请注意,切向植物在符号流形上显示为拉格朗日叶子。我们确定了所有叶轮仿射的空间,在圆环上的切向植物上起作用。我们还证明,三维球不承认任何一个切入的叶子叶子。 (2)在复杂表面中的Levi-Flat真实超表面具有切向圆形的叶面,通常称为Levi叶叶。我们通过研究Levi叶子中的总叶子的全能,获得了紧凑型Levi-Flat Hyperfaces的一些拓扑特性。特别是,我们表明三维球不能嵌入为LEVI-FLAT超表面。该结果应用于二维复杂的动态系统。
项目成果
期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tetsuya Ando: "On the normal bundle of P' in the higher dimeusinal projective variety" American J. Math.113. 949-961 (1991)
Tetsuya Ando:“论高维射影簇中 P 的法束”American J. Math.113。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Takashi Inaba and Shigenori Matsumoto: "Resilient leaves in transversely projective foliations" J.Fac.Sci.Univ.Tokyo. 37. 89-101 (1990)
Takashi Inaba 和 Shigenori Matsumoto:“横向投影叶状结构中的弹性叶子”J.Fac.Sci.Univ.Tokyo。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Takashi Inaba and Shigenori Matsumoto: "Nonsingular expansive flows on 3ーmemfolds and foliations with circle prong singularities" Japan.J.Math.16. 329-340 (1990)
Takashi Inaba 和 Shigenori Matsumoto:“具有圆叉奇点的 3-memfolds 和叶状结构上的非奇异膨胀流”Japan.J.Math.16 (1990)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Sohei Nozawa: "On groups with a selfーcentralizing Sylow pーsubgroup" J.College of Arts and Sci.Bー23. (1990)
Sohei Nozawa:“关于具有自中心 Sylow p 子群的群”J.艺术与科学学院.B-23 (1990)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
D.E.Barrett and Takashi Inaba: "On the topology of compact smooth three dimensional Leviーflat hypersurfaces"
D.E.Barrett 和 Takashi Inaba:“关于紧凑光滑三维 Levi 平坦超曲面的拓扑”
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
INABA Takashi其他文献
INABA Takashi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('INABA Takashi', 18)}}的其他基金
Flows and foliations subordinate to nonintegrable plane fields
流和叶理从属于不可积平面场
- 批准号:
23540071 - 财政年份:2011
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
TOPOLOGICAL AND DYNAMICAL STUDY OF NON-INTEGRABLE DISTRIBUTIONS
不可积分布的拓扑和动力学研究
- 批准号:
19540066 - 财政年份:2007
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topology of nonintegrable plane fields
不可积平面场的拓扑
- 批准号:
16540053 - 财政年份:2004
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topological study of Engel structures and its characteristic foliations
恩格尔结构及其特征叶状结构的拓扑研究
- 批准号:
14540064 - 财政年份:2002
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study of minimal sets in differentiable flows and foliations
可微流和叶状结构中最小集的研究
- 批准号:
11640062 - 财政年份:1999
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A topological study of generalized dynamical systems
广义动力系统的拓扑研究
- 批准号:
09640090 - 财政年份:1997
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似国自然基金
基于离散几何模型的高质量非结构曲面网格生成方法研究
- 批准号:12301489
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
奇异黎曼叶状结构的微分几何学研究
- 批准号:12371048
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于隐式几何描述的梯度随机点阵结构多尺度建模与优化设计
- 批准号:12372200
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于等几何分析的几何建模及其在结构优化设计中的应用
- 批准号:12371383
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
氧化铪基抗高温CMAS腐蚀防护涂层的几何拓扑仿生结构设计及组织调控
- 批准号:52371044
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
相似海外基金
Geometric analysis of mean curvature flow with dynamic contact angle structure
动态接触角结构平均曲率流动的几何分析
- 批准号:
23K12992 - 财政年份:2023
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Dynamic embedding time series models in functional brain imaging
功能性脑成像中的动态嵌入时间序列模型
- 批准号:
10711521 - 财政年份:2023
- 资助金额:
$ 0.96万 - 项目类别:
Studies on topological and geometric structure analysis and visualization of spatio-temporal data
时空数据拓扑几何结构分析与可视化研究
- 批准号:
23K11020 - 财政年份:2023
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integrating cancer genomics and spatial architecture of tumor infiltrating lymphocytes
整合癌症基因组学和肿瘤浸润淋巴细胞的空间结构
- 批准号:
10637960 - 财政年份:2023
- 资助金额:
$ 0.96万 - 项目类别:
Reliable post hoc interpretations of deep learning in genomics
基因组学深度学习的可靠事后解释
- 批准号:
10638753 - 财政年份:2023
- 资助金额:
$ 0.96万 - 项目类别: