Topology of nonintegrable plane fields
不可积平面场的拓扑
基本信息
- 批准号:16540053
- 负责人:
- 金额:$ 2.18万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of this research was to study nonintegrable plane fields from the topological viewpoint and clarify their global behavior.First, we considered the rigidity of loops tangent to Engel plane fields. Given a characteristic curve with the initial point being fixed, we completely determined how the terminal point of the curve can vary by small perturbations of the curve in the space of tangential curves to the plane field. Especially, we obtained the following: The trace of terminal points under perturbations becomes an open set if and only if the developing image of the curve with respect to the canonical projective structure coincides with the whole projective line. As an application of this result we got the following: Any non-affine characteristic loop is non-rigid. We also showed that every 1-dimensional projective structure of the circle can be realized as the canonical projective structure of some characteristic loop in some Engel manifold.Next, we studied the rigidity in higher dimensions. We showed that maximal integral submanifolds of the symbol plane fields on contact manifolds of higher orders are always locally rigid. We also produced an example of a rigid torus in some manifold endowed with a nonintegrable plane field.Thirdly, we tried to generalize the Ghys-Langevin-Walczak geometric entropy of foliations to the nonintegrable cases. To define an entropy, we need to use integral curves. We recognized that if we exclusively use integral curves with bounded geometry we are able to define a notion of entropy for nonintegrable plane fields.Parts of these results have been published in the proceedings of the international conference FOLIATIONS 2005, under the title : On rigidity of submanifold a tangent to nonintegrable foliations.
这项研究的目的是从拓扑角度研究不可整合的平面场,并阐明其全球行为。首先,我们考虑了与恩格尔平面场相切的环的刚性。给定具有固定初始点的特征曲线,我们完全确定了曲线的端子点如何因切向曲线与平面场的曲线的小扰动而变化。尤其是,我们获得以下内容:当且仅当相对于规范的投影结构的开发图像与整个投影线一致时,扰动下的终端点的痕迹才成为一个开放集。作为此结果的应用,我们得到了以下内容:任何非携带特性循环都是非刚性的。我们还表明,圆的每个一维投影结构都可以实现为某些特征环的某些特征环的规范投射结构。我们研究了更高维度的刚度。我们表明,在较高阶的接触歧管上,符号平面场的最大积分子构架始终是局部刚性的。我们还制作了一个具有不可整合平面场的多种歧管中的刚性圆环的示例。三分之一,我们试图将叶子的Ghys-Langevin-Walczak几何熵推广到不可整合的情况下。要定义熵,我们需要使用积分曲线。我们认识到,如果我们专门使用有界几何形状的积分曲线,我们能够为非整合平面字段定义熵概念。这些结果的部分已在2005年国际会议叶子的会议记录中发表,标题为标题:Submanifold的刚性刚度是较小的,与不可整合的叶子相互依赖。
项目成果
期刊论文数量(35)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the group of foliation preserving diffeomorphisms
关于保叶微分同胚群
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:J;Heo;瀧根健志;金周映;井上光輝;金岡 秀明;Takashi Tsuboi
- 通讯作者:Takashi Tsuboi
Stability Properties of Linear Volterra Integrodifferential Equations in a Banach Space
- DOI:10.1619/fesi.48.367
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Y. Hino;S. Murakami
- 通讯作者:Y. Hino;S. Murakami
Regular projectively Anosov flows on the Seifert fibered 3-manifolds
Seifert 纤维 3 流形上的常规投影 Anosov 流
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:T.Tsuboi
- 通讯作者:T.Tsuboi
On the Hodge conjecture and the Tate conjecture for the Hilbert schemes of an abelian surface
关于阿贝尔曲面希尔伯特方案的霍奇猜想和泰特猜想
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:M. Nishio;N. Suzuki and M. Yamada;K. Sugiyama
- 通讯作者:K. Sugiyama
Real hypersurfaces in non-flat complex space forms concerned with the structure Jacobi operator and Ricci tensor
与雅可比算子和里奇张量结构有关的非平复空间形式中的实超曲面
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:U-Hang Ki;Setsuo Nagai;Ryoichi Takagi
- 通讯作者:Ryoichi Takagi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
INABA Takashi其他文献
INABA Takashi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('INABA Takashi', 18)}}的其他基金
Flows and foliations subordinate to nonintegrable plane fields
流和叶理从属于不可积平面场
- 批准号:
23540071 - 财政年份:2011
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
TOPOLOGICAL AND DYNAMICAL STUDY OF NON-INTEGRABLE DISTRIBUTIONS
不可积分布的拓扑和动力学研究
- 批准号:
19540066 - 财政年份:2007
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topological study of Engel structures and its characteristic foliations
恩格尔结构及其特征叶状结构的拓扑研究
- 批准号:
14540064 - 财政年份:2002
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study of minimal sets in differentiable flows and foliations
可微流和叶状结构中最小集的研究
- 批准号:
11640062 - 财政年份:1999
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A topological study of generalized dynamical systems
广义动力系统的拓扑研究
- 批准号:
09640090 - 财政年份:1997
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Foliations and Geometric Structures
叶状结构和几何结构
- 批准号:
02640015 - 财政年份:1990
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Topological study of Engel structures and its characteristic foliations
恩格尔结构及其特征叶状结构的拓扑研究
- 批准号:
14540064 - 财政年份:2002
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on Poissonization of Nambu-Jacobi structures
Nambu-Jacobi结构的泊松化研究
- 批准号:
13640058 - 财政年份:2001
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)