Integrating cancer genomics and spatial architecture of tumor infiltrating lymphocytes
整合癌症基因组学和肿瘤浸润淋巴细胞的空间结构
基本信息
- 批准号:10637960
- 负责人:
- 金额:$ 44.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-11 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressArchitectureAreaBiopsyBrainCancer PatientCellsCharacteristicsClassificationClinicalComputing MethodologiesConsumptionDataData SetDiseaseEndothelial CellsEpitheliumEvaluationFibroblastsGene ExpressionGenomicsGuidelinesHead and Neck CancerHematoxylin and Eosin Staining MethodHistopathologyImageImage AnalysisImmuneImmune responseImmunohistochemistryImmunologic MarkersImmunotherapyJointsLabelLearningLungLymphocyteMacrophageMalignant NeoplasmsManualsMapsMeasuresMethodsModelingMolecularMutationObserver VariationOutcomePathologicPathologistPathologyPatientsPerformancePhenotypePopulationPredictive ValueProceduresProxyRegional CancerReproducibilityResearchResolutionSamplingSpatial DistributionStainsStandardizationStructureTestingThe Cancer Genome AtlasTimeTissue FixationTrainingTumor-Infiltrating LymphocytesValidationautomated analysiscancer genomicscancer imagingcancer immunotherapycancer typecell typecohortcomputer frameworkconvolutional neural networkdata exchangedeep learningdeep learning modeldigitalgenomic datageometric structureimaging modalityimaging systemimmune checkpointimmune checkpoint blockadeinnovationinsertion/deletion mutationmicroscopic imagingmolecular markermultiplexed imagingneoantigensnonsynonymous mutationpathology imagingpatient prognosisprognostic valueresponsespatial relationshiptumortumor heterogeneitytumor microenvironment
项目摘要
ABSTRACT
Tumor infiltrating lymphocytes (TILs) are an important component of the immune cells that reside in the tumor
microenvironment (TME). The type and number of TILs in the TME have an impact on overall survival and are
an indicator of response to immunotherapy. Despite their importance as an indicator of a patient’s immune
response to cancer, there are multiple challenges for analyzing TILS from large population data sets involving
thousands of samples. There is a lack of methods that can automate an analysis of histopathologic images for
different features such as the spatial distribution of TILs, their topological interactions with their neighboring cells
in the TME and their association with specific clinical outcomes. Even more challenging is integrating TIL metrics
with cancer genomic data. Most other methods provide qualitive metrics of TILs and frequently rely on manual
inspection from pathologists – this approach lacks scalability and is subject to observer bias. To address these
challenges, we developed a computational framework that uses a deep learning model to identify multiple cell
types from histopathology images. The major innovation of our approach is molecular label transferring that
annotates tens of thousands of small areas extracted from histopathology images without manual inspections.
This approach is highly accurate, efficient, scalable and readily automated for the analysis of millions of images.
The objective of this project is to address a key challenge in the application of deep learning to
histopathological image: large number of labeled images as training data set. We have three specific aims to 1)
identify spatial quantification of TILs from over 10,000 histopathological images from the Cancer Genome Atlas
Project; 2) correlate TIL metrics with clonal tumor mutation burden (TMB); 3) determine association of TILs with
immune checkpoint blockade responses. This research is significant because our approach enables for a
comprehensive characterization of TILs from histopathological images at cellular level, using data that is
commonly accessible in clinical settings and can be readily integrated with cancer genomic data.
抽象的
肿瘤浸润淋巴细胞(TILS)是驻留在肿瘤中的免疫细胞的重要组成部分
微环境(TME)。 TME中的TIL的类型和数量对整体生存有影响,并且是
对免疫疗法的反应指标。尽管它们是患者免疫的重要性
对癌症的反应,分析大量人口数据集的TIL存在许多挑战
成千上万的样本。缺乏可以自动化组织病理学图像分析的方法
不同的特征,例如TIL的空间分布,它们与邻近细胞的拓扑相互作用
在TME及其与特定临床结果的关联中。更大的挑战是整合TIL指标
伴有癌症基因组数据。大多数其他方法都提供了泰尔的重要指标,并且经常依靠手册
病理学家的检查 - 这种方法缺乏可伸缩性,并且会受到观察者偏见的影响。解决这些
挑战,我们开发了一个计算框架,该框架使用深度学习模型来识别多个单元格
组织病理学图像的类型。我们方法的主要创新是分子标签转移,以
注释从没有手动检查的没有组织病理学图像中提取的成千上万个小区域。
这种方法是高度准确,高效,可扩展的,并且容易自动化,以分析数百万图像。
该项目的目的是应对深入学习的关键挑战
组织病理学图像:大量标记的图像作为训练数据集。我们有三个针对1的特定目标)
从癌症基因组地图集的10,000多个组织病理学图像中确定tils的空间定量
项目; 2)将TIL指标与克隆肿瘤突变(TMB)相关; 3)确定泰尔与
免疫检查点封锁响应。这项研究很重要,因为我们的方法使
使用数据的数据,从细胞级别的组织病理学图像对TIL的全面表征
通常可以在临床环境中访问,并且可以很容易地与癌症基因组数据融为一体。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hanlee P Ji其他文献
Hanlee P Ji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hanlee P Ji', 18)}}的其他基金
K-mer indexing for pan-genome reference annotation
用于泛基因组参考注释的 K-mer 索引
- 批准号:
10793082 - 财政年份:2023
- 资助金额:
$ 44.52万 - 项目类别:
Determine the mechanisms of acquired brain-tropism
确定获得性脑向性的机制
- 批准号:
10813237 - 财政年份:2023
- 资助金额:
$ 44.52万 - 项目类别:
Project 1 - Molecular and Cellular Determinants of High Risk Gastric Precancerous Lesions
项目1——高危胃癌癌前病变的分子和细胞决定因素
- 批准号:
10715762 - 财政年份:2023
- 资助金额:
$ 44.52万 - 项目类别:
Determine the mechanisms of acquired brain-tropism
确定获得性脑向性的机制
- 批准号:
10706493 - 财政年份:2021
- 资助金额:
$ 44.52万 - 项目类别:
Determine the mechanisms of acquired brain-tropism
确定获得性脑向性的机制
- 批准号:
10272359 - 财政年份:2021
- 资助金额:
$ 44.52万 - 项目类别:
Multimodal iterative sequencing of cancer genomes and single tumor cells
癌症基因组和单个肿瘤细胞的多模式迭代测序
- 批准号:
10363694 - 财政年份:2021
- 资助金额:
$ 44.52万 - 项目类别:
Multimodal iterative sequencing of cancer genomes and single tumor cells
癌症基因组和单个肿瘤细胞的多模式迭代测序
- 批准号:
10112576 - 财政年份:2021
- 资助金额:
$ 44.52万 - 项目类别:
Multimodal iterative sequencing of cancer genomes and single tumor cells
癌症基因组和单个肿瘤细胞的多模式迭代测序
- 批准号:
10576304 - 财政年份:2021
- 资助金额:
$ 44.52万 - 项目类别:
相似国自然基金
“共享建筑学”的时空要素及表达体系研究
- 批准号:51978468
- 批准年份:2019
- 资助金额:63.0 万元
- 项目类别:面上项目
建筑学科发展战略研究报告(2021-2025)
- 批准号:51942802
- 批准年份:2019
- 资助金额:15 万元
- 项目类别:专项基金项目
基于城市空间日常效率的普通建筑更新设计策略研究
- 批准号:51778419
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
岭南建筑学派现实主义设计理论及其发展研究
- 批准号:51378212
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
宜居环境的整体建筑学研究
- 批准号:51278108
- 批准年份:2012
- 资助金额:68.0 万元
- 项目类别:面上项目
相似海外基金
Practical Study on Disaster Countermeasure Architecture Model by Sustainable Design in Asian Flood Area
亚洲洪泛区可持续设计防灾建筑模型实践研究
- 批准号:
17K00727 - 财政年份:2017
- 资助金额:
$ 44.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Functional architecture of a face processing area in the common marmoset
普通狨猴面部处理区域的功能架构
- 批准号:
9764503 - 财政年份:2016
- 资助金额:
$ 44.52万 - 项目类别:
SBIR Phase II: Area and Energy Efficient Error Floor Free Low-Density Parity-Check Codes Decoder Architecture for Flash Based Storage
SBIR 第二阶段:用于基于闪存的存储的面积和能源效率高、无错误层的低密度奇偶校验码解码器架构
- 批准号:
1632562 - 财政年份:2016
- 资助金额:
$ 44.52万 - 项目类别:
Standard Grant
Heating and airconditioning by hypocausts in residential and representative architecture in Rome and Latium studies of a phenomenon of luxury in a favoured climatic area of the Roman Empire on the basis of selected examples.
罗马和拉齐奥的住宅和代表性建筑中的火烧供暖和空调根据选定的例子,研究了罗马帝国有利的气候地区的奢华现象。
- 批准号:
317469425 - 财政年份:2016
- 资助金额:
$ 44.52万 - 项目类别:
Research Grants
SBIR Phase I: Area and Energy Efficient Error Floor Free Low-Density Parity-Check Codes Decoder Architecture for Flash Based Storage
SBIR 第一阶段:用于基于闪存的存储的面积和能源效率高、无错误层低密度奇偶校验码解码器架构
- 批准号:
1520137 - 财政年份:2015
- 资助金额:
$ 44.52万 - 项目类别:
Standard Grant