Integrating cancer genomics and spatial architecture of tumor infiltrating lymphocytes
整合癌症基因组学和肿瘤浸润淋巴细胞的空间结构
基本信息
- 批准号:10637960
- 负责人:
- 金额:$ 44.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-11 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressArchitectureAreaBiopsyBrainCancer PatientCellsCharacteristicsClassificationClinicalComputing MethodologiesConsumptionDataData SetDiseaseEndothelial CellsEpitheliumEvaluationFibroblastsGene ExpressionGenomicsGuidelinesHead and Neck CancerHematoxylin and Eosin Staining MethodHistopathologyImageImage AnalysisImmuneImmune responseImmunohistochemistryImmunologic MarkersImmunotherapyJointsLabelLearningLungLymphocyteMacrophageMalignant NeoplasmsManualsMapsMeasuresMethodsModelingMolecularMutationObserver VariationOutcomePathologicPathologistPathologyPatientsPerformancePhenotypePopulationPredictive ValueProceduresProxyRegional CancerReproducibilityResearchResolutionSamplingSpatial DistributionStainsStandardizationStructureTestingThe Cancer Genome AtlasTimeTissue FixationTrainingTumor-Infiltrating LymphocytesValidationautomated analysiscancer genomicscancer imagingcancer immunotherapycancer typecell typecohortcomputer frameworkconvolutional neural networkdata exchangedeep learningdeep learning modeldigitalgenomic datageometric structureimaging modalityimaging systemimmune checkpointimmune checkpoint blockadeinnovationinsertion/deletion mutationmicroscopic imagingmolecular markermultiplexed imagingneoantigensnonsynonymous mutationpathology imagingpatient prognosisprognostic valueresponsespatial relationshiptumortumor heterogeneitytumor microenvironment
项目摘要
ABSTRACT
Tumor infiltrating lymphocytes (TILs) are an important component of the immune cells that reside in the tumor
microenvironment (TME). The type and number of TILs in the TME have an impact on overall survival and are
an indicator of response to immunotherapy. Despite their importance as an indicator of a patient’s immune
response to cancer, there are multiple challenges for analyzing TILS from large population data sets involving
thousands of samples. There is a lack of methods that can automate an analysis of histopathologic images for
different features such as the spatial distribution of TILs, their topological interactions with their neighboring cells
in the TME and their association with specific clinical outcomes. Even more challenging is integrating TIL metrics
with cancer genomic data. Most other methods provide qualitive metrics of TILs and frequently rely on manual
inspection from pathologists – this approach lacks scalability and is subject to observer bias. To address these
challenges, we developed a computational framework that uses a deep learning model to identify multiple cell
types from histopathology images. The major innovation of our approach is molecular label transferring that
annotates tens of thousands of small areas extracted from histopathology images without manual inspections.
This approach is highly accurate, efficient, scalable and readily automated for the analysis of millions of images.
The objective of this project is to address a key challenge in the application of deep learning to
histopathological image: large number of labeled images as training data set. We have three specific aims to 1)
identify spatial quantification of TILs from over 10,000 histopathological images from the Cancer Genome Atlas
Project; 2) correlate TIL metrics with clonal tumor mutation burden (TMB); 3) determine association of TILs with
immune checkpoint blockade responses. This research is significant because our approach enables for a
comprehensive characterization of TILs from histopathological images at cellular level, using data that is
commonly accessible in clinical settings and can be readily integrated with cancer genomic data.
抽象的
肿瘤浸润淋巴细胞 (TIL) 是肿瘤中免疫细胞的重要组成部分
微环境 (TME) TME 中 TIL 的类型和数量对总体生存有影响。
尽管它们作为患者免疫的指标很重要,但它是免疫治疗反应的指标。
对于癌症的反应,从大量人口数据集中分析 TILS 面临着多重挑战,其中包括
缺乏可以自动分析数千个样本的方法。
不同的特征,例如 TIL 的空间分布、它们与相邻细胞的拓扑相互作用
TME 及其与特定临床结果的关联更具挑战性的是整合 TIL 指标。
大多数其他方法提供 TIL 的定性指标,并且经常依赖于手动。
病理学家的检查——这种方法缺乏可扩展性,并且容易受到观察者偏差的影响。
挑战,我们开发了一个计算框架,使用深度学习模型来识别多个细胞
我们方法的主要创新是分子标签转移。
注释从组织病理学图像中提取的数万个小区域,无需手动检查。
这种方法非常准确、高效、可扩展,并且很容易实现自动化,可用于分析数百万张图像。
该项目的目标是解决深度学习应用中的一个关键挑战
组织病理学图像:大量标记图像作为训练数据集,我们有三个具体目标:1)。
从癌症基因组图谱的 10,000 多张组织病理学图像中识别 TIL 的空间量化
项目;2) 将 TIL 指标与克隆肿瘤突变负荷 (TMB) 相关联;3) 确定 TIL 与克隆肿瘤突变负荷的关联;
这项研究意义重大,因为我们的方法能够实现免疫检查点封锁反应。
使用以下数据从细胞水平的组织病理学图像中全面表征 TIL
在临床环境中普遍可用,并且可以轻松与癌症基因组数据集成。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hanlee P Ji其他文献
Hanlee P Ji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hanlee P Ji', 18)}}的其他基金
K-mer indexing for pan-genome reference annotation
用于泛基因组参考注释的 K-mer 索引
- 批准号:
10793082 - 财政年份:2023
- 资助金额:
$ 44.52万 - 项目类别:
Determine the mechanisms of acquired brain-tropism
确定获得性脑向性的机制
- 批准号:
10813237 - 财政年份:2023
- 资助金额:
$ 44.52万 - 项目类别:
Project 1 - Molecular and Cellular Determinants of High Risk Gastric Precancerous Lesions
项目1——高危胃癌癌前病变的分子和细胞决定因素
- 批准号:
10715762 - 财政年份:2023
- 资助金额:
$ 44.52万 - 项目类别:
Determine the mechanisms of acquired brain-tropism
确定获得性脑向性的机制
- 批准号:
10706493 - 财政年份:2021
- 资助金额:
$ 44.52万 - 项目类别:
Determine the mechanisms of acquired brain-tropism
确定获得性脑向性的机制
- 批准号:
10272359 - 财政年份:2021
- 资助金额:
$ 44.52万 - 项目类别:
Multimodal iterative sequencing of cancer genomes and single tumor cells
癌症基因组和单个肿瘤细胞的多模式迭代测序
- 批准号:
10363694 - 财政年份:2021
- 资助金额:
$ 44.52万 - 项目类别:
Multimodal iterative sequencing of cancer genomes and single tumor cells
癌症基因组和单个肿瘤细胞的多模式迭代测序
- 批准号:
10112576 - 财政年份:2021
- 资助金额:
$ 44.52万 - 项目类别:
Determine the mechanisms of acquired brain-tropism
确定获得性脑向性的机制
- 批准号:
10927525 - 财政年份:2021
- 资助金额:
$ 44.52万 - 项目类别:
相似国自然基金
“共享建筑学”的时空要素及表达体系研究
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
基于城市空间日常效率的普通建筑更新设计策略研究
- 批准号:51778419
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
宜居环境的整体建筑学研究
- 批准号:51278108
- 批准年份:2012
- 资助金额:68.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
新型钒氧化物纳米组装结构在智能节能领域的应用
- 批准号:20801051
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 44.52万 - 项目类别:
Molecular Mechanisms of Mitochondrial Biogenesis
线粒体生物发生的分子机制
- 批准号:
10735778 - 财政年份:2023
- 资助金额:
$ 44.52万 - 项目类别:
Neurocognitive Mechanisms of Sentence Production Impairment in Aphasia
失语症句子产生障碍的神经认知机制
- 批准号:
10735595 - 财政年份:2023
- 资助金额:
$ 44.52万 - 项目类别:
Asian American Prevention Research: A Populomics Epidemiology Cohort (ARISE)
亚裔美国人预防研究:人口组学流行病学队列 (ARISE)
- 批准号:
10724884 - 财政年份:2023
- 资助金额:
$ 44.52万 - 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 44.52万 - 项目类别: