Lacal Behavior of Two-Dimensional Brownian Motion and Hausdorff Measure

二维布朗运动的局部行为和豪斯多夫测度

基本信息

  • 批准号:
    01540202
  • 负责人:
  • 金额:
    $ 0.38万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
  • 财政年份:
    1989
  • 资助国家:
    日本
  • 起止时间:
    1989 至 1990
  • 项目状态:
    已结题

项目摘要

1. Theme (I) Proof of existence of non-trivial two-sided flat points for two-dimensional Brownian motion (1) In 1989 we negatively conjectured on Taylor's problem as follows : " It would be impossible to divide a two-dimensional Brownian path into two pieces by a random straight line almost surely. (It was actually proved by Khoshnevisan in 1990.) We also had the opinion that we might have a positive answer to Theme (I) which was a variation to Taylor's problem and one of the critical behaviors of two-dimensional Brownian motion. Then we had an outline of a proof of Theme (I). (2) In 1990 we completed the proof of Theme (I). Theorem we got there was as follows : " For almost sure two-dimensional Brownian paths there exist non-trivial two-sided flat points, from which we may find points as close to Taylor's one as we wish. " 2. Theme (II) Find the exact Hausdorff measure function for a set of two-sided flat points It follows from the proof of Theme (I) we had the following conjecture : Consider a Hausdorff measure function such that 1/[logx]^r (r>0) as xー>+0. Then we would have r_0>0 for which the following holds : The Hausdorff measure of the set would be * or 0 according as 0<r<r_0 or r>r_0. We will prove the conjecture. 3. Other results We completed a paper entitled " A limit theorem for two-dimensional random walk conditioned to stay in cone".
1. Theme (I) Proof of existence of non-trivial two-sided flat points for two-dimensional Brownian motion (1) In 1989 we negatively conjectured on Taylor's problem as follows: " It would be impossible to divide a two-dimensional Brownian path into two pieces by a random straight line almost certainly. (It was actually proved by Khoshnevisan in 1990.) We also had the opinion that we might have a positive answer to Theme (I) Which was泰勒的问题和二维布朗运动的关键行为之一(ii)找到一组双面平坦点的确切的Hausdorff测量函数,它从主题证明(i)中遵循以下概念:考虑hausdorff的测量函数,以便1/[logx]^r(r> 0)为x->+0。然后,我们将拥有以下内容的R_0> 0:集合的Hausdorff测量为 *或0为0 <r <r_0或r_0。我们将证明这个概念。 3。其他结果我们完成了一篇题为“二维随机步行的限制定理,以保持圆锥状态”。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Michio Shimura: "A limit theorem for two-dimensional random walk conditioned to stay in a cone" Yokohama Mathematical J.Vol. 39. (1991)
志村道雄:“以圆锥体为条件的二维随机游走的极限定理”横滨数学杂志卷。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Michio Shimura: "A limit theorem for twoーdimensional random walk couditioned to stay in a cone" Yokohama Mathematical Journal. 39. (1991)
Michio Shimura:“二维随机游走的极限定理可保持在圆锥体中”,横滨数学杂志 39。(1991)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Michio Shimura: "A limit theorew for twoーdimensional random walk conditioned to stay in a cone" Yokohama Mathematical Journal. 39. (1991)
Michio Shimura:“二维随机游走的极限理论,条件为保持在圆锥体中”,横滨数学杂志 39。(1991)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SHIMURA Michio其他文献

SHIMURA Michio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SHIMURA Michio', 18)}}的其他基金

Asymptotic Analysis of Probability Laws and Path Behaviors for Markov Processes
马尔可夫过程的概率定律和路径行为的渐近分析
  • 批准号:
    09640293
  • 财政年份:
    1997
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

特異点理論の情報幾何学への応用探究~《特異モデルの情報幾何学》の創設
探索奇点理论在信息几何中的应用——创建“奇异模型的信息几何”
  • 批准号:
    22KJ0052
  • 财政年份:
    2023
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Innovative research of geometric topology and singularities of differentiable mappings
几何拓扑和可微映射奇异性的创新研究
  • 批准号:
    17H06128
  • 财政年份:
    2017
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Geometric structures which admits singular points and the realization problem
承认奇点的几何结构及其实现问题
  • 批准号:
    16K17605
  • 财政年份:
    2016
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Weierstrass-type representation formulas and their application to surfaces with singularities
Weierstrass型表示公式及其在奇点曲面上的应用
  • 批准号:
    21340016
  • 财政年份:
    2009
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Differential Geometry and Partial Differential Equations as an application of Singularity theory
微分几何和偏微分方程作为奇点理论的应用
  • 批准号:
    18340013
  • 财政年份:
    2006
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了