Asymptotic Analysis of Probability Laws and Path Behaviors for Markov Processes

马尔可夫过程的概率定律和路径行为的渐近分析

基本信息

项目摘要

In this reseach project, Shimura considered asymptotic analysis for the exit probability of two dimensional random walk with drift from a quadrant, applying a technique from Monte Carlo Method. He examined applicability of some consequence from the theory of random walk defined on a Markov chain to the problem. Nishioka obtained "Ito calculus" and "Girsanov formula" for the biharmonic psudo process with the biharmnic operator as its generator. He also investigated some properties of solutions for a class of quasilinear biharmonic equations which is related with some problem from the fluid dynamics. Tanemuira considered precisely the uniqueness and the ergodicity for the infinite Brownian particle system with a hard core potential. Kotani obtained an asymptotic formula for the transition probability of a random walk on some infinite graphs. She also considered the spectral structure of some harmonic maps. Tsukada investigated the sufficiency for the statistics of some stochastic processes and infinite particle systems from the point of operator algebra. Ohguchi dealt with the numerical analysis of some Markov chains related to the finance, in which he examined usefulness of some quasi-random numbers.During the term of this project, the project members exchanged the related rescent results with M.Kondo (Shimane Univ.), K.Hirano (Osaka Univ.), T.Watanabe. (Okayama Science Univ.), M.Motoo (Tokyo Institute Technology), T.Yamada (Ritsumekan Univ.) and S.Sato (Tokyo Denki Univ.).
在这个研究项目中,Shimura考虑了渐近分析,用于从象限中漂移两维随机步行的退出概率,并应用了Monte Carlo方法的技术。他检查了马尔可夫链上定义的随机步行理论对问题的适用性。 Nishioka获得了Biharmonic Psudo工艺的“ ITO微积分”和“ Girsanov公式”,将Biharmnic操作员作为其发电机。他还研究了一类准线性双旋链方方程的溶液的某些特性,这与流体动力学中的一些问题有关。 Tanemuira精确地考虑了具有坚硬核心潜力的无限棕色粒子系统的独特性和牙齿性。 Kotani获得了在某些无限图上随机行走的过渡概率的渐近公式。她还考虑了一些谐波图的光谱结构。 Tsukada从操作员代数点研究了一些随机过程和无限粒子系统的统计数据。 Ohguchi处理了与金融有关的一些马尔可夫链的数值分析,他在其中检查了一些准随机数字的有用性。在该项目的术语中,项目成员与M.Kondo(Shimane Univ。),K.Hirano(Osaka Univ。 (冈山科学大学),M.Motoo(东京研究所技术),T.Yamada(Ritsumekan Univ。)和S.Sato(Tokyo Denki Univ。)。

项目成果

期刊论文数量(25)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
塚田真(高橋眞映との共著): "The best possibility of the bound for the kantorovich inequality and some remarks" J.of Ivequalities and Applications. 1. 327-334 (1997)
Makoto Tsukada(与 Maye Takahashi 合着):“坎托罗维奇不等式的界限的最佳可能性和一些评论”J.of Ivequalities and Applications (1997)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
塚田 真: "Imtevacting systems and sufficienoy" Proc.China and Japan Joint Symp.on Applied Math.(1999)
Makoto Tsukada:“Imtevacting systems and sufficienoy”Proc.China and Japan Joint Symp.on Applied Math.(1999)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
西岡國雄: "The first hitting time and place of a halfline by a biharmonic pseudo process" Japan.J.of Mathematics. 23. 235-280 (1997)
Kunio Nishioka:“通过双调和伪过程的半线的第一次击球时间和地点”Japan.J.of Mathematics. 23. 235-280 (1997)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Tsukada, M.and Takahasi, S.-E.: "The best possi-bility of the bound for the Kantorovich inequaility and some remarks." J.Inequal.Appl.Vol.1. 327-334 (1997)
Tsukada, M. 和 Takahasi, S.-E.:“Kantorovich 不等式的界限的最佳可能性和一些评论。”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
志村道夫: "Exit probabi lity of two-dimensional raudomwalk from the quadrasst" Proc.Japan Acad.75,SerA. 39-42 (1999)
Michio Shimura:“来自四边形的二维随机游走的退出概率”Proc.Japan Acad.75,SerA 39-42 (1999)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
共 25 条
  • 1
  • 2
  • 3
  • 4
  • 5
前往

SHIMURA Michio的其他基金

Lacal Behavior of Two-Dimensional Brownian Motion and Hausdorff Measure
二维布朗运动的局部行为和豪斯多夫测度
  • 批准号:
    01540202
    01540202
  • 财政年份:
    1989
  • 资助金额:
    $ 1.6万
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Malliavin calculus for stochastic flows
随机流的 Malliavin 微积分
  • 批准号:
    15540133
    15540133
  • 财政年份:
    2003
  • 资助金额:
    $ 1.6万
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
TITLE OF PROJECT : SELF-DIFFUSION MATRIX OF INTERACTING BROWNIAN MOTIONS
项目名称:相互作用布朗运动的自扩散矩阵
  • 批准号:
    09640244
    09640244
  • 财政年份:
    1997
  • 资助金额:
    $ 1.6万
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Research of the hydrodynamic limit by probabilistic methods
概率方法研究水动力极限
  • 批准号:
    08454036
    08454036
  • 财政年份:
    1996
  • 资助金额:
    $ 1.6万
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
    Grant-in-Aid for Scientific Research (B)