Information Theoretic Research on Big Data Compression and Analytics: Theory, Algorithms, and Applications

大数据压缩与分析的信息论研究:理论、算法与应用

基本信息

  • 批准号:
    RGPIN-2016-03871
  • 负责人:
  • 金额:
    $ 3.28万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

With an explosion in data sets in our society, we are at the beginning of a big data revolution. Big data has a potential to accelerate the pace of discovery in science, engineering, and medicine, improve healthcare, finance, business, and our lives, and ultimately transform our society. To tap the opportunities afforded by the big data revolution, however, many challenges of big data have to be carefully addressed. For example, to fast access remotely, and reduce the on-going cost of maintaining, huge volumes of digital data, it is desirable to compress data as much as possible. Likewise, to glean knowledge and discoveries from huge volumes of digital data, tools and techniques based on context analytics have to be developed to organize, visualize, and manage huge volumes of digital data. Efficient data compression and accurate context analytics are of vital importance to turning big data to knowledge and discoveries to actions while achieving resource (bandwidth and power) efficiency. In the past, data compression and data analytics have been largely investigated separately in different disciplines. Although data compression has been around for many years, its existing theories and techniques, especially source coding theory from information theory, have been largely developed for stationary and/or well-structured data (such as text, web pages, etc.). In the context of big data, however, most data types are nonstationary and unstructured/semi-structured; applying existing compression techniques directly to these data types often leads to unsatisfied compression performance. Therefore, it is imperative to develop novel compression theories and techniques by incorporating data analytics into data compression to handle the lack of structure and stationarity in an elegant way. In the opposite direction, it is also beneficial to investigate how to apply information theoretic ideas, particularly source coding theory and techniques, to data analytics to develop better solutions for data analytics such as cognitive distance, clustering, and organization. Building on our early success, in this research, we will investigate and explore the interactions of data compression and analytics to advance knowledge in both fields. Our approach will be information theoretic. Three theme areas will be focused on: (1) interactions of data compression and analytics to improve lossy compression performance for nonstationary and unstructured data; (2) interactions of data compression and analytics to develop better cognitive distances and hence provide better tools for data clustering and organization; and (3) compression of and pattern discovery in large bipartite graphs. In the process of achieving our scientific objectives, we will maintain and enhance our leadership in the related areas, and train highly qualified personnel in information and communications technology for Canada.
随着社会数据集的爆炸式增长,我们正处于大数据革命的开端。大数据有潜力加快科学、工程和医学领域的发现步伐,改善医疗保健、金融、商业和我们的生活,并最终改变我们的社会。 然而,要抓住大数据革命带来的机遇,必须认真应对大数据的许多挑战。例如,为了快速远程访问并降低维护大量数字数据的持续成本,需要尽可能地压缩数据。同样,为了从大量数字数据中收集知识和发现,必须开发基于上下文分析的工具和技术来组织、可视化和管理大量数字数据。高效的数据压缩和准确的上下文分析对于将大数据转化为知识、将发现转化为行动、同时实现资源(带宽和功率)效率至关重要。 过去,数据压缩和数据分析主要在不同学科中分别进行研究。尽管数据压缩已经存在多年,但其现有的理论和技术,特别是来自信息论的源编码理论,主要是针对静态和/或结构良好的数据(例如文本、网页等)而开发的。然而,在大数据背景下,大多数数据类型都是非平稳的、非结构化/半结构化的;将现有压缩技术直接应用于这些数据类型通常会导致压缩性能不满意。因此,迫切需要开发新颖的压缩理论和技术,将数据分析融入数据压缩中,以优雅的方式解决结构性和平稳性的缺乏。相反,研究如何将信息论思想,特别是源编码理论和技术应用到数据分析中,为认知距离、聚类和组织等数据分析开发更好的解决方案也是有益的。 在我们早期成功的基础上,在这项研究中,我们将调查和探索数据压缩和分析的相互作用,以推进这两个领域的知识。我们的方法将是信息论的。将重点关注三个主题领域:(1)数据压缩和分析的交互,以提高非平稳和非结构化数据的有损压缩性能; (2)数据压缩和分析的相互作用,以形成更好的认知距离,从而为数据聚类和组织提供更好的工具; (3)大型二分图中的压缩和模式发现。在实现科学目标的过程中,我们将保持并加强在相关领域的领先地位,为加拿大培养信息和通信技术方面的高素质人才。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yang, Enhui其他文献

Targeting HDAC11 activity by FT895 restricts EV71 replication
  • DOI:
    10.1016/j.virusres.2023.199108
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Xie, Hong;Yang, Enhui;Wang, Chaoyong;Peng, Chunyan;Ji, Lianfu
  • 通讯作者:
    Ji, Lianfu
HMGB1 Release Induced by EV71 Infection Exacerbates Blood-Brain Barrier Disruption via VE-cadherin Phosphorylation
EV71 感染诱导的 HMGB1 释放通过 VE-钙粘蛋白磷酸化加剧血脑屏障破坏
  • DOI:
    10.1016/j.virusres.2023.199240
  • 发表时间:
    2023-12
  • 期刊:
  • 影响因子:
    5
  • 作者:
    You, Qiao;Wu, Jing;Liu, Ye;Zhang, Fang;Jiang, Na;Tian, Xiaoyan;Cai, Yurong;Yang, Enhui;Lyu, Ruining;Zheng, Nan;Chen, Deyan;Wu, Zhiwei
  • 通讯作者:
    Wu, Zhiwei

Yang, Enhui的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yang, Enhui', 18)}}的其他基金

Information Theoretic Coding for Deep Neural Networks: Frameworks, Theory, and Algorithms
深度神经网络的信息论编码:框架、理论和算法
  • 批准号:
    RGPIN-2022-03526
  • 财政年份:
    2022
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Discovery Grants Program - Individual
Information Theory and Applications
信息论与应用
  • 批准号:
    CRC-2016-00083
  • 财政年份:
    2022
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Canada Research Chairs
Information Theoretic Coding for Deep Neural Networks: Frameworks, Theory, and Algorithms
深度神经网络的信息论编码:框架、理论和算法
  • 批准号:
    RGPIN-2022-03526
  • 财政年份:
    2022
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Discovery Grants Program - Individual
Information Theory and Applications
信息论与应用
  • 批准号:
    CRC-2016-00083
  • 财政年份:
    2022
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Canada Research Chairs
Information Theoretic Research on Big Data Compression and Analytics: Theory, Algorithms, and Applications
大数据压缩与分析的信息论研究:理论、算法与应用
  • 批准号:
    RGPIN-2016-03871
  • 财政年份:
    2021
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Discovery Grants Program - Individual
Information Theory And Applications
信息论及其应用
  • 批准号:
    CRC-2016-00083
  • 财政年份:
    2021
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Canada Research Chairs
Information Theory And Applications
信息论及其应用
  • 批准号:
    CRC-2016-00083
  • 财政年份:
    2021
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Canada Research Chairs
Information Theoretic Research on Big Data Compression and Analytics: Theory, Algorithms, and Applications
大数据压缩与分析的信息论研究:理论、算法与应用
  • 批准号:
    RGPIN-2016-03871
  • 财政年份:
    2021
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Discovery Grants Program - Individual
Information Theoretic Research on Big Data Compression and Analytics: Theory, Algorithms, and Applications
大数据压缩与分析的信息论研究:理论、算法与应用
  • 批准号:
    RGPIN-2016-03871
  • 财政年份:
    2018
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Discovery Grants Program - Individual
Information Theoretic Research on Big Data Compression and Analytics: Theory, Algorithms, and Applications
大数据压缩与分析的信息论研究:理论、算法与应用
  • 批准号:
    RGPIN-2016-03871
  • 财政年份:
    2018
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

超大规模MIMO系统信道状态信息获取与无线传输理论研究
  • 批准号:
    62371180
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于证据理论和量子决策的多源信息融合研究
  • 批准号:
    62303382
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
理论指导的融合辅助信息的自监督学习研究
  • 批准号:
    62376010
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于信息几何的超大规模MIMO传输理论方法研究
  • 批准号:
    62371125
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
超大规模MIMO信道状态信息获取理论与关键技术研究
  • 批准号:
    62301148
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Information-Theoretic Surprise-Driven Approach to Enhance Decision Making in Healthcare
信息论惊喜驱动方法增强医疗保健决策
  • 批准号:
    10575550
  • 财政年份:
    2023
  • 资助金额:
    $ 3.28万
  • 项目类别:
Collaborative Research: CIF: Medium: An Information-Theoretic Foundation for Adaptive Bidding in First-Price Auctions
合作研究:CIF:媒介:一价拍卖中自适应出价的信息理论基础
  • 批准号:
    2106508
  • 财政年份:
    2021
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Standard Grant
Information Theoretic Research on Big Data Compression and Analytics: Theory, Algorithms, and Applications
大数据压缩与分析的信息论研究:理论、算法与应用
  • 批准号:
    RGPIN-2016-03871
  • 财政年份:
    2021
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Discovery Grants Program - Individual
Information Theoretic Research on Big Data Compression and Analytics: Theory, Algorithms, and Applications
大数据压缩与分析的信息论研究:理论、算法与应用
  • 批准号:
    RGPIN-2016-03871
  • 财政年份:
    2021
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: CIF: Medium: An Information-Theoretic Foundation for Adaptive Bidding in First-Price Auctions
合作研究:CIF:媒介:一价拍卖中自适应出价的信息理论基础
  • 批准号:
    2106467
  • 财政年份:
    2021
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了