Collaborative Research: CIF: Medium: An Information-Theoretic Foundation for Adaptive Bidding in First-Price Auctions

合作研究:CIF:媒介:一价拍卖中自适应出价的信息理论基础

基本信息

  • 批准号:
    2106508
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

With the advent and increasing consolidation of e-commerce, digital advertising has very recently replaced traditional advertising as the main marketing force in the economy. In the past two years, a particularly important development in the digital advertising industry is the shift from second-price auctions to first-price auctions for online display ads. This shift immediately motivated the intellectually challenging question of how to bid in first-price auctions, because unlike in second-price auctions, bidding one's private value truthfully is no longer optimal. Furthermore, this shift has two unique modern characteristics: 1) the auctions are occurring repeatedly at a very high frequency and the bidding decisions must be made on that (milliseconds) timescale; second, there is exchange-dependent feedback information that one can and should leverage to inform one's sequential bidding decisions. These two characteristics expose drawbacks in the existing game-theoretical approaches and call for novel and principled developments in sequential bidding. The methodological and algorithmic innovation established in this project could also potentially help various organizations with advertising needs to navigate in the new and challenging landscape of display ads bidding.The broad goal of this project is to develop a methodological framework that intelligently and adaptively leverages past information to construct bidding strategies that are both computationally and statistically efficient. This requires developing information-theoretic tools to understand the fundamental learning limits for bidding in first-price auctions, where the reward function is neither convex nor continuous but has a special structure of its own that needs to be exploited. Further, it requires developing computationally efficient bidding and private value estimation algorithms for repeated first-price auctions that could meet the demanding nature of real-time bidding and large-scale historical bidding dataset, as well as learning-theoretical tools that enable the analysis and rigorous characterization of the algorithms' performance.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着电子商务的出现和日益整合,数字广告最近取代了传统广告,成为经济中的主要营销力量。过去两年,数字广告行业一个特别重要的发展是在线展示广告从二价拍卖向一价拍卖的转变。这种转变立即引发了如何在第一价格拍卖中投标的智力挑战问题,因为与第二价格拍卖不同,真实地投标一个人的私人价值不再是最佳选择。此外,这种转变具有两个独特的现代特征:1)拍卖以非常高的频率重复发生,并且投标决策必须在该(毫秒)时间尺度上做出;其次,存在依赖于交易所的反馈信息,人们可以而且应该利用这些信息来为后续的投标决策提供信息。这两个特征暴露了现有博弈论方法的缺陷,并要求顺序投标中新颖且有原则的发展。该项目中建立的方法和算法创新还可能帮助有广告需求的各种组织在展示广告竞价的新的、充满挑战的领域中导航。该项目的总体目标是开发一个方法框架,智能地、自适应地利用过去的信息构建计算和统计上均有效的出价策略。这需要开发信息论工具来理解最高价拍卖中出价的基本学习限制,其中奖励函数既不是凸的也不是连续的,而是有一个需要利用的特殊结构。此外,它需要开发计算效率高的竞价和私人价值估计算法,用于重复的第一价格拍卖,以满足实时竞价和大规模历史竞价数据集的要求,以及能够进行分析和评估的学习理论工具。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
MEOW: A Space-Efficient Nonparametric Bid Shading Algorithm
MEOW:一种节省空间的非参数投标着色算法
  • DOI:
    10.1145/3447548.3467113
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhang, Wei;Kitts, Brendan;Han, Yanjun;Zhou, Zhengyuan;Mao, Tingyu;He, Hao;Pan, Shengjun;Flores, Aaron;Gultekin, San;Weissman, Tsachy
  • 通讯作者:
    Weissman, Tsachy
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhengyuan Zhou其他文献

Power Control with Random Delays: Robust Feedback Averaging
具有随机延迟的功率控制:鲁棒反馈平均
Sample Complexity of Variance-reduced Distributionally Robust Q-learning
方差减少的分布鲁棒 Q 学习的样本复杂度
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shengbo Wang;Nian Si;J. Blanchet;Zhengyuan Zhou
  • 通讯作者:
    Zhengyuan Zhou
A Finite Sample Complexity Bound for Distributionally Robust Q-learning
分布式鲁棒 Q 学习的有限样本复杂度界限
Development of Hypoxia Trapping Enhanced BB2R-Targeted Radiopharmaceutics for Prostate Cancer
缺氧捕获增强型 BB2R 靶向放射性药物治疗前列腺癌的开发
  • DOI:
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhengyuan Zhou
  • 通讯作者:
    Zhengyuan Zhou
Learning to Bid Optimally and Efficiently in Adversarial First-price Auctions
学习在对抗性第一价格拍卖中最优且高效地出价
  • DOI:
  • 发表时间:
    2020-07-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yanjun Han;Zhengyuan Zhou;Aaron Flores;E. Ordentlich;T. Weissman
  • 通讯作者:
    T. Weissman

Zhengyuan Zhou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhengyuan Zhou', 18)}}的其他基金

Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Distributionally Robust Policy Learning
合作研究:CIF:媒介:分布式稳健政策学习的统计和算法基础
  • 批准号:
    2312205
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
  • 批准号:
    82304250
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肠道普拉梭菌代谢物丁酸抑制心室肌铁死亡改善老龄性心功能不全的机制研究
  • 批准号:
    82300430
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
  • 批准号:
    72302067
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向图像目标检测的新型弱监督学习方法研究
  • 批准号:
    62371157
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向开放域对话系统信息获取的准确性研究
  • 批准号:
    62376067
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326622
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326621
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343600
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403123
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326622
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了