Towards optimization of wearable sensor technology to measure human movement in real world settings

优化可穿戴传感器技术以测量现实世界中的人体运动

基本信息

  • 批准号:
    RGPIN-2019-04514
  • 负责人:
  • 金额:
    $ 2.04万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

The market for wearable sensors to measure and track human function has exploded in recent years. More and more people are using such devices to monitor many different aspects of everyday life. This explosion has been brought on by advances in technology such as reduced size and cost of such sensors, as well as increased battery life and storage capabilities, and has been facilitated by an ever-growing public desire to better understand how one's body is working. Unfortunately, this growth in availability and demand for these devices has far outgrown the science of the data in which they create. Very little information exists to inform decisions related to best sensor configuration, appropriateness of certain variables, and which activities are best measured. The proposed research will directly address these gaps, and will lead to a novel classification algorithm designed to detect changes in movement parameters in the real world using wearable technology. These are necessary steps to achieve my long-term vision of a better understanding of fundamental human movement through the development of innovative detection algorithms and best practice policies for the collection of movement data using wearable technologies.******The immediate short-term objectives of the research will be to improve the quantification of human movement patterns using wearable sensor technology during common activities of daily living. I will lead a research program over the next five years that will advance our ability to understand human movement in real world settings. We will improve sensor configuration and key parameters related to the collection of human movement data from wearable sensors using sophisticated analysis techniques. Our hypotheses and advances will first be informed and tested using current gold-standard motion capture systems to ensure accuracy and validity of our new sensor configurations. We will then translate our findings to the real world by developing a novel detection algorithm aiming to classify movement changes in real-world settings. ******Our novel contributions from this research will provide researchers with better knowledge for how to best incorporate wearable movement technology into their studies. This knowledge will help facilitate a transition from reliance on expensive laboratory-based movement assessment that may not accurately depict real world functioning. Industry will use the contributions from this research to refine the development of new and existing commercially-available wearable movement sensors that will result in more accurate and reliable products used in the general population. Finally, the general public will benefit from this work. Users ranging from athletes and coaches who use these devices to assess movement to improve athletic performance, to everyday individuals who are interested in simply tracking their movement performance for overall well-being, will stand to benefit.
近年来,用于测量和跟踪人体功能的可穿戴传感器市场呈爆炸式增长。越来越多的人使用此类设备来监控日常生活的许多不同方面。这种爆炸式增长是由技术进步带来的,例如此类传感器尺寸和成本的减小,以及电池寿命和存储能力的提高,并且公众对更好地了解人体如何工作的日益增长的愿望也促进了这种爆炸式增长。不幸的是,这些设备的可用性和需求的增长远远超出了它们所创建的数据的科学范围。很少有信息可以为与最佳传感器配置、某些变量的适当性以及哪些活动最好测量相关的决策提供信息。拟议的研究将直接解决这些差距,并将产生一种新颖的分类算法,旨在使用可穿戴技术检测现实世界中运动参数的变化。这些是实现我的长期愿景的必要步骤,即通过开发创新的检测算法和使用可穿戴技术收集运动数据的最佳实践政策,更好地了解人类的基本运动。******眼前的短期-该研究的长期目标是在日常生活的常见活动中使用可穿戴传感器技术改进人类运动模式的量化。我将在未来五年领导一个研究项目,该项目将提高我们理解现实世界中人类运动的能力。我们将使用先进的分析技术改进与从可穿戴传感器收集人体运动数据相关的传感器配置和关键参数。我们的假设和进展将首先使用当前的黄金标准动作捕捉系统进行了解和测试,以确保我们新传感器配置的准确性和有效性。然后,我们将通过开发一种新颖的检测算法将我们的发现转化为现实世界,该算法旨在对现实世界环境中的运动变化进行分类。 ******我们在这项研究中的新颖贡献将为研究人员提供更好的知识,帮助他们更好地将可穿戴运动技术融入他们的研究中。这些知识将有助于促进人们摆脱对昂贵的基于实验室的运动评估的依赖,这种评估可能无法准确地描述现实世界的功能。业界将利用这项研究的贡献来完善新的和现有的商用可穿戴运动传感器的开发,从而为普通大众提供更准确、更可靠的产品。最后,广大公众将从这项工作中受益。从使用这些设备评估运动以提高运动表现的运动员和教练,到有兴趣简单跟踪其运动表现以获取整体健康的普通人,用户都将受益。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hunt, Michael其他文献

Hunt, Michael的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hunt, Michael', 18)}}的其他基金

Expanding our ability to assess and modify movement in real-world settings
扩展我们在现实环境中评估和修改运动的能力
  • 批准号:
    RGPIN-2021-02484
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Expanding our ability to assess and modify movement in real-world settings
扩展我们在现实环境中评估和修改运动的能力
  • 批准号:
    RGPIN-2021-02484
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Expanding our ability to assess and modify movement in real-world settings
扩展我们在现实环境中评估和修改运动的能力
  • 批准号:
    RGPIN-2021-02484
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Expanding our ability to assess and modify movement in real-world settings
扩展我们在现实环境中评估和修改运动的能力
  • 批准号:
    RGPIN-2021-02484
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Neuromuscular mechanisms governing knee joint biomechanics during normal gait
正常步态下控制膝关节生物力学的神经肌肉机制
  • 批准号:
    418025-2013
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Neuromuscular mechanisms governing knee joint biomechanics during normal gait
正常步态下控制膝关节生物力学的神经肌肉机制
  • 批准号:
    418025-2013
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Biomechanics of novel shoe-worn orthotic designs
新型鞋穿矫形器设计的生物力学
  • 批准号:
    499458-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Engage Grants Program
Biomechanics of novel shoe-worn orthotic designs
新型鞋穿矫形器设计的生物力学
  • 批准号:
    499458-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Engage Grants Program
Neuromuscular mechanisms governing knee joint biomechanics during normal gait
正常步态下控制膝关节生物力学的神经肌肉机制
  • 批准号:
    418025-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Neuromuscular mechanisms governing knee joint biomechanics during normal gait
正常步态下控制膝关节生物力学的神经肌肉机制
  • 批准号:
    418025-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

新型抗菌蛋白CB6-C结构优化及其抗MRSA纳米给药系统研究
  • 批准号:
    32302932
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
极端气候条件下多能源互补系统设计优化的建模方法研究
  • 批准号:
    52306027
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
切削-激光冲击加工耐磨微织构化轴向柱塞泵的摩擦密封性能与效率优化
  • 批准号:
    52305464
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
sp3非晶碳力学和热学性质的优化调控与大块体制备研究
  • 批准号:
    12304015
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于稀疏优化的冗余机器人低能耗及容噪运动规划研究
  • 批准号:
    62363012
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

CAREER: Personalized, wearable robot mobility assistance considering human-robot co-adaptation that incorporates biofeedback, user coaching, and real-time optimization
职业:个性化、可穿戴机器人移动辅助,考虑人机协同适应,结合生物反馈、用户指导和实时优化
  • 批准号:
    2340519
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Continuing Grant
Optimization of monitoring, prediction and phenotyping of deterioration of inhospital patients using machine learning and multimodal real time data
使用机器学习和多模态实时数据优化住院患者病情恶化的监测、预测和表型分析
  • 批准号:
    10735863
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
ETAware: Continuous monitoring of the functional impact of essential tremor
ETAware:持续监测特发性震颤的功能影响
  • 批准号:
    10819790
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
Longitudinal Biomechanics and Patient-Reported Outcomes after Periacetabular Osteotomy for Developmental Dysplasia of the Hip
髋臼周围截骨术治疗髋关节发育不良后的纵向生物力学和患者报告的结果
  • 批准号:
    10561427
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
Progression and differential control of postural and kinetic tremor with deep brain stimulation
深部脑刺激对姿势性和运动性震颤的进展和差异控制
  • 批准号:
    10536431
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了