Together at Last: Perception and Learning for Collaborative Robots Operating in Human-Centric Environments
最终在一起:在以人为中心的环境中运行的协作机器人的感知和学习
基本信息
- 批准号:RGPIN-2018-06524
- 负责人:
- 金额:$ 2.04万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Cobots, or collaborative robots, are a class of machines intended to physically interact with humans in a shared space. This definition encompasses a large variety of hardware systems and application domains (from manufacturing to autonomous vehicles). Over the next five years, this nascent market segment is expected to boom all major robotics manufacturers have established new products in this category. The goal of the proposed research program is to dramatically advance the state of the art in collaborative robotics, making cobots more capable and more safe than at present. This research will bridge the gap and help make cobots ubiquitous outside of laboratories. The program has four key research themes: 1) introspection, sensor fusion, and sensor and actuator self-calibration, 2) semantic mapping, 3) intention recognition for trust-based interaction, and 4) formal testing and validation. These themes are tied together by the unifying thread of advanced perceptual processing, with the aim of creating flexible cobot platforms for the real world.******Research activities across the four themes (or project areas) will build upon results from robotics and machines learning. A general framework for hierarchical perception will be developed, beginning with low-level data fusion and leading to high-level semantic understanding. Data from novel sensing modalities will be fused into consistent environment representations; through self-calibration and introspection, a baseline level of functionality and safety will be maintained at all times. Multimodal sensor data will then be processed to generate semantic maps, which will include information about objects and their relationships (allowing for reasoning about interactions). The maps will be produced using clustering and supervised learning. By extending semantic perception, human intention and activity recognition will become possible. Intention recognition and response learning will significantly enhance safety, ensuring that each party (human and robot) is able to anticipate the actions of the other. Finally, all capabilities will be verified in an extensive test campaign that includes formal validation, using an advanced mobile manipulator.******The proposed research program has the potential for transformative impact in a wide range of industries, fundamentally changing the way people work with robots and, in turn, leveraging robotics to enhance productivity and quality of life. Research outputs will create new technological solutions that will be readily transferable to Canadian companies, giving them the tools they need to enter new economic areas that have tremendous growth potential. Many of these markets, including service robotics and advanced manufacturing (for, e.g., aerospace) will be of critical importance to Canada in maintaining a competitive edge in the global marketplace.
协作机器人或协作机器人是一类旨在在共享空间中与人类进行物理交互的机器。该定义涵盖了各种各样的硬件系统和应用领域(从制造到自动驾驶汽车)。未来五年,这一新兴市场预计将蓬勃发展,所有主要机器人制造商都已推出此类新产品。拟议研究计划的目标是极大地推进协作机器人技术的发展,使协作机器人比目前更强大、更安全。这项研究将弥补这一差距,并帮助协作机器人在实验室之外无处不在。该项目有四个关键研究主题:1)内省、传感器融合以及传感器和执行器自校准,2)语义映射,3)基于信任的交互的意图识别,以及4)正式测试和验证。这些主题通过先进感知处理的统一线索联系在一起,旨在为现实世界创建灵活的协作机器人平台。******跨四个主题(或项目领域)的研究活动将建立在机器人技术成果的基础上和机器学习。将开发分层感知的通用框架,从低级数据融合开始,直至高级语义理解。来自新颖传感方式的数据将被融合到一致的环境表示中;通过自我校准和自省,功能和安全的基线水平将始终保持。然后,多模态传感器数据将被处理以生成语义地图,其中包括有关对象及其关系的信息(允许对交互进行推理)。这些地图将使用聚类和监督学习来生成。通过扩展语义感知,人类意图和活动识别将成为可能。意图识别和响应学习将显着提高安全性,确保各方(人类和机器人)能够预测对方的行为。最后,所有功能都将在广泛的测试活动中得到验证,其中包括使用先进的移动操纵器进行正式验证。******拟议的研究计划有可能对广泛的行业产生变革性影响,从根本上改变方式人们与机器人一起工作,反过来又利用机器人技术来提高生产力和生活质量。研究成果将创造新的技术解决方案,这些解决方案将很容易转移给加拿大公司,为他们提供进入具有巨大增长潜力的新经济领域所需的工具。其中许多市场,包括服务机器人和先进制造(例如航空航天)对于加拿大在全球市场上保持竞争优势至关重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kelly, Jonathan其他文献
Capsule robot pose and mechanism state detection in ultrasound using attention-based hierarchical deep learning
使用基于注意力的分层深度学习进行超声中胶囊机器人姿态和机构状态检测
- DOI:
10.1038/s41598-022-25572-w - 发表时间:
2022-12-07 - 期刊:
- 影响因子:4.6
- 作者:
Liu, Xiaoyun;Esser, Daniel;Wagstaff, Brandon;Zavodni, Anna;Matsuura, Naomi;Kelly, Jonathan;Diller, Eric - 通讯作者:
Diller, Eric
Rapid cell death is preceded by amyloid plaque-mediated oxidative stress.
淀粉样蛋白斑介导的氧化应激导致细胞快速死亡。
- DOI:
- 发表时间:
2013-05-07 - 期刊:
- 影响因子:11.1
- 作者:
Xie, Hong;Hou, Steven;Jiang, Jun;Sekutowicz, Maria;Kelly, Jonathan;Bacskai, Brian J - 通讯作者:
Bacskai, Brian J
EDIFY (Eating Disorders: Delineating Illness and Recovery Trajectories to Inform Personalised Prevention and Early Intervention in Young People): project outline.
- DOI:
10.1192/bjb.2022.83 - 发表时间:
2023-12 - 期刊:
- 影响因子:2.6
- 作者:
Hemmings, Amelia;Sharpe, Helen;Allen, Karina;Bartel, Heike;Campbell, Iain C.;Desrivieres, Sylvane;Dobson, Richard J. B.;Folarin, Amos A.;French, Tara;Kelly, Jonathan;Micali, Nadia;Raman, Sneha;Treasure, Janet;Abbas, Ruby;Heslop, Beck;Street, Tallulah;Schmidt, Ulrike - 通讯作者:
Schmidt, Ulrike
Kelly, Jonathan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kelly, Jonathan', 18)}}的其他基金
Together at Last: Perception and Learning for Collaborative Robots Operating in Human-Centric Environments
最终在一起:在以人为中心的环境中运行的协作机器人的感知和学习
- 批准号:
RGPIN-2018-06524 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Together at Last: Perception and Learning for Collaborative Robots Operating in Human-Centric Environments
最终在一起:在以人为中心的环境中运行的协作机器人的感知和学习
- 批准号:
RGPIN-2018-06524 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Together at Last: Perception and Learning for Collaborative Robots Operating in Human-Centric Environments
最终在一起:在以人为中心的环境中运行的协作机器人的感知和学习
- 批准号:
RGPIN-2018-06524 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Lidar-Based Semantic Mapping of Indoor Environments
基于激光雷达的室内环境语义映射
- 批准号:
558367-2020 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Alliance Grants
Lidar-Based Semantic Mapping of Indoor Environments
基于激光雷达的室内环境语义映射
- 批准号:
558367-2020 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Alliance Grants
相似国自然基金
北极“最后冰区”冰间湖极端事件的遥感精细化监测方法
- 批准号:42371362
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
获益-风险感知在精神分裂症患者用药体验中的作用及医患共享决策助推式干预:基于用药“最后一公里”
- 批准号:72304076
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于分布式鲁棒优化的最后一公里物流整合模式及效应研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
无人机在复杂环境中的最后一公里配送优化研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
北半球春季平流层最后增温的爆发对初春至盛夏季节欧亚地区气候异常的影响
- 批准号:41975048
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
相似海外基金
Together at Last: Perception and Learning for Collaborative Robots Operating in Human-Centric Environments
最终在一起:在以人为中心的环境中运行的协作机器人的感知和学习
- 批准号:
RGPIN-2018-06524 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Together at Last: Perception and Learning for Collaborative Robots Operating in Human-Centric Environments
最终在一起:在以人为中心的环境中运行的协作机器人的感知和学习
- 批准号:
RGPIN-2018-06524 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Together at Last: Perception and Learning for Collaborative Robots Operating in Human-Centric Environments
最终在一起:在以人为中心的环境中运行的协作机器人的感知和学习
- 批准号:
RGPIN-2018-06524 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Together at Last: Perception and Learning for Collaborative Robots Operating in Human-Centric Environments
最终在一起:在以人为中心的环境中运行的协作机器人的感知和学习
- 批准号:
RGPIN-2018-06524 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Together at Last: Perception and Learning for Collaborative Robots Operating in Human-Centric Environments
最终在一起:在以人为中心的环境中运行的协作机器人的感知和学习
- 批准号:
RGPIN-2018-06524 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual