Superconducting magnet cryostat system for terahertz spectroscopy

用于太赫兹光谱的超导磁体低温恒温器系统

基本信息

  • 批准号:
    495542626
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Major Research Instrumentation
  • 财政年份:
    2022
  • 资助国家:
    德国
  • 起止时间:
    2021-12-31 至 无数据
  • 项目状态:
    未结题

项目摘要

The superconducting magnet cryostat system requested by the group of Prof. Lange allows for the investigation of ultrastrongly and deep-strongly light-matter coupled cavity quantum electrodynamical (c-QED) structures in the terahertz (THz) spectral range. Tailoring near fields of THz modes by quantitative, parameter-free numerical simulations, our group designs and fabricates light-matter coupled structures for c-QED experiments, as well as near-field enhancing resonators enabling THz experiments with atomically strong fields. This subwavelength control of electromagnetic fields plays a central role for our group’s aim to investigate extreme limits of light-matter interaction in which optical nonlinearities occur on time scales significantly shorter than a single cycle of light. Recent research highlights include nonlinearities of Landau electrons beyond Kohn’s theorem, the observation of dynamical Bloch oscillations and high-harmonics generation, lightwave acceleration of Dirac electrons in topological insulators, minimally dissipative spin switching in antenna-enhanced THz near fields, non-adiabatic control of deep-strongly light-matter coupled electrons in switchable THz resonators, and the observation of carrier-wave Rabi flopping of ultrastrongly coupled resonances.The requested magnet cryostat will allow us to continue this research and explore novel directions of THz subcycle physics in condensed-matter systems. The system’s key features include magnetic fields of up to 6 T while providing an exceptionally large and symmetric optical aperture corresponding to an opening angle of 45°, permitting tight focusing and thus strong THz field amplitudes, in the focal plane. These properties will enable the investigation of strong-field THz dynamics in magnetic fields, which in particular concerns our Landau polariton c-QED systems. Here, we aim for previously inaccessible light-matter coupling strengths, where the vacuum Rabi frequency significantly exceeds the carrier frequency of light. Furthermore, we will explore novel c-QED concepts including superconducting resonators or atomically thin materials such as transition metal dichalcogenides, in magnetic fields. Transitioning from linear to non-perturbatively nonlinear dynamics, we expect to unveil novel phenomena including high-order nonlinearities, generation of non-classical light, resonances generated by nonlinear interactions of cavity polaritons, or phase transitions.
Lange 教授团队要求的超导磁体低温恒温器系统可以研究太赫兹 (THz) 光谱范围内的超强和深强光物质耦合腔量子电动力学 (c-QED) 结构。通过定量、无参数数值模拟,我们的团队设计并制造了用于 c-QED 实验的光-物质耦合结构,以及支持太赫兹实验的近场增强谐振器这种电磁场的亚波长控制对于我们小组研究光与物质相互作用的极端极限起着核心作用,其中光学非线性发生在比单个光周期短得多的时间尺度上。最近的研究亮点包括非线性。超越科恩定理的朗道电子、动态布洛赫振荡和高次谐波产生的观察、拓扑绝缘体中狄拉克电子的光波加速,最低限度天线增强太赫兹近场中的耗散自旋切换,可切换太赫兹谐振器中深强光物质耦合电子的非绝热控制,以及超强耦合谐振的载波拉比跳变的观察。所需的磁体低温恒温器将使我们能够继续这项研究并探索凝聚态物质系统中太赫兹次循环物理的新方向。该系统的主要特点包括高达 6 T 的磁场,同时提供异常大的磁场。和对应于 45° 开角的对称光学孔径,允许在焦平面上紧密聚焦,从而实现强太赫兹场振幅,这些特性将使研究磁场中的强场太赫兹动力学成为可能,这尤其涉及我们的朗道。在这里,我们的目标是以前无法达到的光-物质耦合强度,其中真空拉比频率显着超过光的载波频率此外,我们将探索包括超导在内的新颖的c-QED概念。谐振器或原子薄材料(例如过渡金属二硫化物)在磁场中从线性动力学过渡到非扰动非线性动力学,我们期望揭示新的现象,包括高阶非线性、非经典光的产生、非线性相互作用产生的共振。空腔极化子,或相变。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Acute sleep deprivation increases inflammation and aggravates heart failure after myocardial infarction.
Ionic Liquids-Polymer of Intrinsic Microporosity (PIMs) Blend Membranes for CO(2) Separation.
  • DOI:
    10.3390/membranes12121262
  • 发表时间:
    2022-12-13
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

前驱体团簇介导磁铁矿生成及固砷的机理研究
  • 批准号:
    42377228
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
典型鞍山式磁铁矿石的解离机制和模型优化研究
  • 批准号:
    52374259
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
磁铁矿Re-Os同位素定年体系的关键控制因素研究
  • 批准号:
    42373027
  • 批准年份:
    2023
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
基于颗粒形貌的磁铁矿磨矿过程优化研究
  • 批准号:
    52304301
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
赤/磁铁矿与含铁硅酸盐矿物浮选分离强化基础研究
  • 批准号:
    52374262
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

He3-Cryostat with superconducting magnet
带超导磁体的 He3 低温恒温器
  • 批准号:
    451544120
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Major Research Instrumentation
A 1.5-T superconducting solenoid-dipole magnet for a magic-angle spinning field
用于魔角旋转场的 1.5T 超导螺线管偶极磁体
  • 批准号:
    8239103
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
A 1.5-T superconducting solenoid-dipole magnet for a magic-angle spinning field
用于魔角旋转场的 1.5T 超导螺线管偶极磁体
  • 批准号:
    8534118
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
A 1.5-T superconducting solenoid-dipole magnet for a magic-angle spinning field
用于魔角旋转场的 1.5T 超导螺线管偶极磁体
  • 批准号:
    8334660
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
Fundamental Studies of Superconducting Electromagnetic Ship Thruster Driven by the Alternating Magnetic Field
交变磁场驱动超导电磁船舶推进器基础研究
  • 批准号:
    61460074
  • 财政年份:
    1986
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了