A structure of solutions of initial-boundary value problems for parabolic-hyperbolic equations and applications to numerical analises

抛物双曲方程初边值问题的解结构及其在数值分析中的应用

基本信息

  • 批准号:
    16540174
  • 负责人:
  • 金额:
    $ 1.6万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2006
  • 项目状态:
    已结题

项目摘要

This research is mainly concerned with entropy solutions for scalar conservation laws as well as nonlinear degenerate parabolic equations. The main results which we obtained are the followings : 1. We introduce a new notion of renormalized dissipative solutions for scalar conservation laws with locally Lipschitz continuous flux-functions and prove that this solution is equivalent to renormalized entropy solutions which are introduced by Benilan et al. in the study of (unbounded) L1 solutions. We also construct a renormalized dissipative solution for contractive relaxation systems in merely an L1 setting. 2. We study two types unbounded weak solutions of the Cauchy problem for scalar conservation laws, that is a renormalized entropy solution and a kinetic solution. It is proved that if u is a kinetic solution, then it is indeed a renormalized entropy solution. Conversely, we prove that if u is a renormalized entropy solution which satisfies a certain additional condition, then it becomes a kinetic solution. 3. We study the comparison principle for nonlinear degenerate parabolic equations with initial and non-homogeneous boundary conditions. We prove a comparison theorem for any (bounded) entropy sub-and super-solution. The L1 contractivity and therefore uniqueness of (unbounded) entropy solutions has been obtained so far, but a comparison result is new. The method used there is the so called doubling variable technique due to Kruzkov. Our method is based upon the kinetic formulation and the kinetic technique. By developing the kinetic technique for degenerate parabolic equations with boundary conditions, we obtain a comparison property. 4. We extend the above result stated in the item 3 to the case of unbounded entropy solutions. We consider the problem in an L1 framework and prove a comparison theorem and existence theorem for renormalized entropy solutions.
这项研究主要涉及标量保护法的熵解决方案以及非线性退化抛物线方程。我们获得的主要结果是以下内容:1。我们引入了一种具有局部Lipschitz连续通量功能的标量保护定律的重新规定耗散溶液的新概念,并证明该溶液等于Renilalan et ef benililan et allialan et al trused fuls。在(无限)L1溶液的研究中。我们还为仅在L1设置中的收缩放松系统构建了重新归一化的耗散解决方案。 2。我们研究了标量保护定律的两种类型的库奇问题的无界弱解,即是重新归一化的熵溶液和动力学溶液。事实证明,如果u是动力学溶液,那么它确实是一种重新归一化的熵解决方案。相反,我们证明,如果U是满足一定额外条件的重新归一化熵解决方案,则它将成为动力学解决方案。 3。我们研究具有初始和非均匀边界条件的非线性退化抛物线方程的比较原理。我们证明了任何(有限的)熵子和超溶液的比较定理。到目前为止,已经获得了L1的合同性和(无限)熵解决方案的唯一性,但比较结果是新的。在那里使用的方法是由于Kruzkov引起的所谓的加倍变量技术。我们的方法基于动力学配方和动力学技术。通过开发具有边界条件的退化抛物线方程的动力学技术,我们获得了比较特性。 4。我们将第3项中所述的上述结果扩展到无界熵解决方案的情况。我们考虑了L1框架中的问题,并证明了对重新归一化熵解决方案的比较定理和存在定理。

项目成果

期刊论文数量(40)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A kinetic approach to comparison properties for degenerate parabolic-hyperbolic equations with boundary conditions
  • DOI:
    10.1016/j.jde.2006.07.008
  • 发表时间:
    2006-11
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Kazuo Kobayasi
  • 通讯作者:
    Kazuo Kobayasi
On the existence of renormalized dissipative solutions via relaxation for conservatoin laws
关于通过放松守恒律重正化耗散解的存在性
The relationship between kinetic solutions and renormalized Entropy solutions of scalar conservation laws
标量守恒定律的动力学解与重正化熵解之间的关系
Remarks on BV estimates for vanishing viscosity approximations to hyperbolic systems
关于双曲系统消失粘度近似的 BV 估计的备注
A kinetic approach to a comparison theorem for degenerate parebolic equations
简并抛物线方程比较定理的动力学方法
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KOBAYASI Kazuo其他文献

KOBAYASI Kazuo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KOBAYASI Kazuo', 18)}}的其他基金

Entropy solutions for nonlinear degenerate parabolic equations and hyperbolic systems of conservation laws
非线性简并抛物线方程和守恒定律双曲系统的熵解
  • 批准号:
    22540235
  • 财政年份:
    2010
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Mathematical analysis of the initial value boundary value problem of viscous flows with hyperbolic effects
具有双曲效应的粘性流初值边值问题的数学分析
  • 批准号:
    22K03374
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Almost periodic oscillations of linear and nonlinear hyperbolic equations
线性和非线性双曲方程的几乎周期性振荡
  • 批准号:
    18540220
  • 财政年份:
    2006
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The initial-boundary value problem for a system of nonlinear elastic waves
非线性弹性波系统的初边值问题
  • 批准号:
    16540199
  • 财政年份:
    2004
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
US-Germany Cooperative Research: On Some Fundamental Issues in the Initial Boundary Value Problem of GR
美德合作研究:GR初始边值问题的一些基本问题
  • 批准号:
    0307290
  • 财政年份:
    2003
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Standard Grant
Behavior of spatial critical points and level surfaces of solutions of partial differential equations and shapes of the solutions
偏微分方程解的空间临界点和水平面的行为以及解的形状
  • 批准号:
    15340047
  • 财政年份:
    2003
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了