Statistical properties of complex systems with subexponetnatial instability and phase transition
具有次指数不稳定和相变的复杂系统的统计特性
基本信息
- 批准号:15540135
- 负责人:
- 金额:$ 1.98万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One of the purpose of this project is to clarify how statistical properties of complex systems is influenced by subexponential instability of the dynamics. In particular, we direct our attention to non-hyperbolic phenomena exhibiting phase transitions. For this purpose, piecewise invertible systems with generalized indifferent periodic orbits associated to a given potential function are considered. For such systems, it was shown in [1] that the presence of such orbits causes non-uniqueness of equilibrium states (phase transitions) and non-Gibbsianness of equilibrium measures. More specifically, we established in [1] that non-Gibbsian behaviour of equilibrium states in the sense of Bowen, non-differentiability of the pressure function (phase transiton), powerlike tails of the distribution of the stopping times over hyperbolic regions, and the Hausdorff dimension of level sets associated to pointwise dimension. In particular, non-differentiability of pressure functions is related to multifractal problem. We also established in [2] that the natural extensions of invariant ergodic weak Gibbs measures absolutely continuous with respect to weak Gibbs conformal measures possess a version of u -Gibbs property. In particular, if dynamical potentials admit generalized indifferent periodic points, then the natural extensions exhibit non-Gibbsian character in statistical mechanics. Another purpose of this project is to associate non-Gibbsian weak Gibbs measures for intermittent maps to non-Gibbsian weakly Gibbssian states in statistical mechanics in the sense of Dobrushin. This purpose was achiedved in [ 31 and we showed a higher dimensional intermittent map of which Sinai-Bowen-Ruelle measure is a weak Gibbs equilibrium state and a weakly Gibbsian state in the sense of Dobrushin admitting essential discontinuities in its conditional probabilities.
该项目的目的之一是阐明复杂系统的统计属性如何受动力学的次指定不稳定的影响。特别是,我们将注意力转移到表现出相变的非纤维化现象上。为此,考虑了与给定潜在功能相关的具有广义无关的周期性轨道的分段可逆系统。对于此类系统,在[1]中表明,这种轨道的存在会导致平衡状态(相变)和平衡度量的非吉布斯主义性。更具体地说,我们在[1]中确定了平衡状态在鲍恩(Bowen)意义上,压力函数的非差异性(相通顿)的非差异性,止血区域上停止时间分布的尾巴的非差异性,以及与点循环减小相关的Hausdorff尺寸。特别是,压力函数的非差异性与多重分子问题有关。我们还在[2]中确定,不变的千古弱吉布斯的自然扩展与弱Gibbs共形度量绝对连续,具有U -Gibbs属性的版本。特别是,如果动态电势允许通用的漠不关心的周期点,则自然扩展在统计力学中表现出非吉布斯的特征。该项目的另一个目的是将间歇地图的非Gibbsian弱Gibbs措施与统计力学的非Gibbsian弱Gibbssian状态相关联。在[31中对此目的进行了痛苦,我们显示了一个较高维度的间歇性图,西奈 - 鲍恩 - 荷兰措施是弱的gibbs平衡状态,而在多布鲁什(Dobrushin)的意义上是弱小的吉布斯(Gibbsian)状态。
项目成果
期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Non-Gibbsianness of SRB measures for the natural extension of Intermittent systems
间歇系统自然扩展的 SRB 测量的非吉布斯性
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:Michiko Yuri;Michiko Yuri;Michiko Yuri;Michiko Yuri;Michiko Yuri
- 通讯作者:Michiko Yuri
Thermodynamic formalism for countable to one Markov systems
可数到一个马尔可夫系统的热力学形式主义
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:Michiko Yuri
- 通讯作者:Michiko Yuri
Phase transition, Non-Gibbsianness and Subexponential Instability
相变、非吉布斯性和次指数不稳定性
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:Michiko Yuri;Michiko Yuri;Michiko Yuri;Michiko Yuri
- 通讯作者:Michiko Yuri
Michiko Yuri: "Weak Gibbs measures for Intermittent systems and Weakly Gibbsian States in Statistical Mechanics"Communications in Mathematical Physics. Vol241. 453-466 (2003)
Michiko Yuri:“统计力学中间歇系统的弱吉布斯测量和弱吉布斯状态”数学物理通讯。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Weak Gibbs measures for intermittent systems and weakly Gibbsian states in statistical mechanics
统计力学中间歇系统的弱吉布斯测度和弱吉布斯状态
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:Michiko Yuri;Michiko Yuri
- 通讯作者:Michiko Yuri
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YURI Michiko其他文献
YURI Michiko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YURI Michiko', 18)}}的其他基金
Statistical properties of nonstationary weak Gibbs states and analysis of dissipative phenomena for those invertible extensions
非平稳弱吉布斯态的统计特性和可逆外延的耗散现象分析
- 批准号:
21340018 - 财政年份:2009
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
An analysis of dissipative phenomena and intermittency in complex systems via a generalized variational principle
通过广义变分原理分析复杂系统中的耗散现象和间歇性
- 批准号:
19540109 - 财政年份:2007
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-Gibbsianness and phase transition in complex systems
复杂系统中的非吉布斯性和相变
- 批准号:
17540132 - 财政年份:2005
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Statistical properties of weak Gibbs measures for complex systems with nonhyperbolic periodic orbits
非双曲周期轨道复杂系统弱吉布斯测度的统计特性
- 批准号:
13640133 - 财政年份:2001
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Statistical properties of equilibrium states for complex systems
复杂系统平衡状态的统计特性
- 批准号:
11640134 - 财政年份:1999
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
On statistical properties for nonlinear nonhyperbolic systems
非线性非双曲系统的统计特性
- 批准号:
09640289 - 财政年份:1997
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似国自然基金
间歇性列车荷载作用下路基填料变形特性及计算模型研究
- 批准号:52308335
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
间歇性低氧下瘦素对环路增益的影响及其机制
- 批准号:82300118
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
深埋隧道间歇性断裂型岩爆孕育机理与风险判识
- 批准号:52309126
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
GLI1乙酰化修饰在间歇性缺氧诱导的Hedgehog通路激活及心脏纤维化中的作用与机制研究
- 批准号:82370258
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
基于PYCR1/CREB1探究慢性间歇性低氧改变血管通透性和促进肿瘤转移的机制
- 批准号:82370087
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345581 - 财政年份:2024
- 资助金额:
$ 1.98万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345582 - 财政年份:2024
- 资助金额:
$ 1.98万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345583 - 财政年份:2024
- 资助金额:
$ 1.98万 - 项目类别:
Standard Grant
Turbulence Intermittency for Cloud Physics (TITCHY)
云物理的湍流间歇性 (TITCHY)
- 批准号:
EP/Z000149/1 - 财政年份:2024
- 资助金额:
$ 1.98万 - 项目类别:
Research Grant
CAREER: Intermittency and Two-Fluid Transitions in Pulsed-Power-Driven Magnetized Turbulence
职业:脉冲功率驱动磁化湍流中的间歇性和二流体转变
- 批准号:
2339326 - 财政年份:2023
- 资助金额:
$ 1.98万 - 项目类别:
Continuing Grant